Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T13:10:39.010Z Has data issue: false hasContentIssue false

An extension of Cramér's estimate for the absorption probability of a random walk

Published online by Cambridge University Press:  24 October 2008

E. Arjas
Affiliation:
Institute of Mathematics, Helsinki University of Technology, Otaniemi, Finland
T. P. Speed
Affiliation:
Department of Probability and Statistics, University of Sheffield, Sheffield, U.K.

Extract

Consider a real-valued random walk

which is defined on a Markov chain {Xn: n ≥ 0} with countable state space I. We assume that a matrix Q(.) = (qij(.)) is given such that

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Cinlar, E.Markov renewal theory. Adv. Appl. Prob. 1 (1969), 123187.CrossRefGoogle Scholar
(2)Cramér, H.On some questions connected with mathematical risk. Univ. California Publ. Statist. 2 (1954), 99124.Google Scholar
(3)Feller, W.An introduction to probability theory and its applications, 2nd ed., volume 2 (Wiley, New York, 1971).Google Scholar
(4)Keilson, J. and Wishart, D. M. G.A central limit theorem for processes defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 60 (1964), 547567.CrossRefGoogle Scholar
(5)Kemeny, J. G., Snell, J. L. and Knapp, A. W.Denumerable Markov chains (Van Nostrand, Princeton, 1966).Google Scholar
(6)Kingman, J. F. C.A convexity property of positive matrices. Quart. J. Math. Oxford 12 (1961), 283284.CrossRefGoogle Scholar
(7)Matthews, J. P. A study of processes associated with a finite Markov chain. Ph.D. thesis (1971), University of Sheffield (unpublished).Google Scholar
(8)Miller, H. D.A matrix factorization problem in the theory of random variables defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 58 (1962), 268285.CrossRefGoogle Scholar
(9)Miller, H. D.Absorption probabilities for sums of random variables defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 58 (1962), 286298.CrossRefGoogle Scholar
(10)Presman, E.Factorization methods and boundary problems for sums of random variables given on Markov chains. Izv. Akad. Nauk USSR Ser. Mat. 33 (1969). (English translation. Amer. Math. Soc. (1971), 818852.)Google Scholar
(11)Vere-Jones, D.Ergodic properties of non-negative matrices, I. Pacific J. Math. 23 (1967), 601620.Google Scholar