Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T18:53:03.618Z Has data issue: false hasContentIssue false

An existence theorem for the discrete coagulation-fragmentation equations

Published online by Cambridge University Press:  24 October 2008

John L. Spouge
Affiliation:
Theoretical Biology and Biophysics, University of California; Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

Extract

This paper gives an existence result for the discrete coagulation-fragmentation equations:

(If k = 1, the first and last sums are 0.)

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Aizenman, M. and Bak, T. A.. Convergence to equilibrium in a system of reacting polymers. Commun. Math. Phys. 65, (1979), 203230.Google Scholar
[2] Barrow, J. D.. Coagulation with fragmentation. J. Phys. A 14 (1981), 729733.CrossRefGoogle Scholar
[3]Cohen, R. J. and Benedek, G. B.. Equilibrium and kinetic theory of the sol-gel transition. J. Ghent. Phys. 86 (1982), 36963714.Google Scholar
[4]Dbake, R.. In Topics in Current Aerosol Research, International Reviews in Aerosol Physics and Chemistry vol. 2, ed. Hidy, G. M. and Brock, J. R. (Pergamon, 1972).Google Scholar
[5]Ernst, M. H., Hellesoe, K. and Hauge, E. H.. Nonunique solutions of kinetic equations. J. Statist. Phys. 27 (1982), 677691.CrossRefGoogle Scholar
[6]Habtman, P.. Ordinary Differential Equations (Wiley, 1964).Google Scholar
[7]Hendbiks, E. M., Ernst, M. H. and Ziff, R. M.. Coagulation equations with gelation. J. Statist. Phys. 31 (1983), 519563.CrossRefGoogle Scholar
[8]Kingman, J. F. C. and Taylor, S. J.. Introduction to Measure and Probability (Cambridge University Press 1966).CrossRefGoogle Scholar
[9]Leyvraz, F. and Tschudi, H. R.. Singularities in the kinetics of coagulation processes. J. Phys. A 14 (1983), 33893405.Google Scholar
[10]Lushnikov, A. A.. Evolution of coagulating systems. J. Colloid Sci. 45 (1973), 549556.CrossRefGoogle Scholar
[11]McLeod, J. B.. On an infinite set of non-linear differential equations. Quatt. J. Math. Oxford Ser. (2), 13 (1962), 119128Google Scholar
[12]Mcleod, J. B.. On an infinite set of non-linear differential equations (II). Quart. J. Math. Oxford Ser. (2), 13 (1962), 193205.CrossRefGoogle Scholar
[13]McLeod, J. B.. On a recurrence formula in differential equations. Quart. J. Math. Oxford Ser. (2), 13 (1962), 283284.Google Scholar
[14]McLeod, J. B.. On the scalar transport equation. Proc. London Math. Soc. (3), 14 (1964) 445458.CrossRefGoogle Scholar
[15]Melzak, Z. A.. A scalar transport equation. Trans. Amer. Math. Soc. 85 (1957), 547560.CrossRefGoogle Scholar
[16]Melzak, Z. A.. A scalar transport equation. Michigan Math. J. 4 (1957), 193206.Google Scholar
[17]Melzak, Z. A.. The positivity sets of the solutions of atransport equation. Michigan Math. J. 6 (1959), 331334.Google Scholar
[18]Samsel, R. W. and Perelson, A. S.. Kinetics of rouleaux formation. I. A mass action approach with geometric features. Biophys. J. 37(1982), 493514.Google Scholar
[19]Von Smolxjchowski, M.. Versuch einer mathematischen theorie der kolloider Losungen. Z. phys. Chem. 92 (1917), 129168.Google Scholar
[20]Spouge, J. L.. Solutions and critical times for the polydisperse coagulation equation when a(x, y) = A + B(x + y) + Cxy. J. Phys. A. 16 (1983), 31273132.Google Scholar
[21]Spouge, J. L.. A branching-process solution of the polydisperse coagulation equation. Adv. in Appl. Probab. 16 (1984), 5669.Google Scholar
[22]Tbubnikov, B. A.. Solution of the coagulation equations in the case of a bilinear coefficient of adhesion of particles. Soviet Phys. Dolk 16 (1971), 124126.Google Scholar
[23]White, W. H.. A global existence theorem for Smoluchowski’s coagulation equations. Proc. Amer. Math. Soc. 80 (1980), 273276.Google Scholar
[24]Ziff, R. M.. Kinetics of polymerization. J. Statist. Phys. 23 (1980), 241263.CrossRefGoogle Scholar