Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-20T00:32:35.660Z Has data issue: false hasContentIssue false

An algebraic model of graded calculus of variations

Published online by Cambridge University Press:  24 October 2008

B. A. Kupershmidt
Affiliation:
The University of Tennessee Space Institute, Tullahoma, TN 37388, U.S.A.

Extract

The modern theory of integrable systems rests on two fundamental pillars: the classification of Lax [13] and zero-curvature equations [14, 1, 2]; and algebraic models of the classical calculus of variations [9,5] specialized to the residue calculus in modules of differential forms over rings of matrix pseudo-differential operators [9, 6]. Both these aspects of the theory are by now very well understood for integrable systems in one space dimension.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Drinfel'd, V. G. and Sokolov., V. V.Korteweg-de Vries equations and simple Lie algebras. Dokl. Akad. Nauk SSSR 258 (1981), 1116 (Russian); Soviet Math. Dokl. 23 (1981), 457–462 (English).Google Scholar
[2]Drinfel'd, V. G. and Sokolov., V. V.Lie algebras and the Korteweg-de Vries type equations. Itogi Nauki i Tekhniki, ser. Sovremennye Problemi Mathematiki, 24 (1984), 81180 (Russian); J. Sov. Math. 30 (1985), 1975–2036 (English).Google Scholar
[3]Gel'fand, I. M. and Dikii., L. A.Asymptotic behaviour of the resolvent of Sturm-Liouville equations and the algebra of the Korteweg-de Vries equations. Uspekhi Mat. Nauk (5) 30 (1975), 67100; Russian Math. Surveys (5) 30 (1975), 77–113.Google Scholar
[4]Kupershmidt., B. A. Geometry of jet bundles and the structures of Lagrangian and Hamiltonian formalisms. Lect. Notes in Math. vol. 775 (Springer-Verlag, 1980), 162218.Google Scholar
[5]Kupershmidt., B. A.Discrete Lax Equations and Differential-Difference Calculus. Astérisque 123 (1985).Google Scholar
[6]Kupershmidt, B. A. and Wilson., G.Modifying Lax equations and the second Hamiltonian structure. Invent. Math. 62 (1981), 403436.CrossRefGoogle Scholar
[7]Leites., D. A.Introduction to Supermanifolds. Uspekhi Mat. Nauk (1) 35 (1980), 357.Google Scholar
[8]Leites., D. A.Theory of Supermanifolds. Petrozavodsk (1983) (in Russian).Google Scholar
[9]Manin., Yu. I.Algebraic aspects of non-linear differential equations. Itogi Nauki i Tekhniki, ser. Sovremennye Problemi Mathematiki 11 (1978), 5152 (Russian); J. Soviet Math. 11 (1979), 1–122 (English).Google Scholar
[10]Manin, Yu. I.Holomorphic supergeometry and Yang-Mills superfields. Itogi Nauki i Tekhniki, ser. Sovremennye Problemi Mathematiki 24 (1984), 3180 (in Russian).Google Scholar
[11]Manin, Yu. I. and Radul., A. O.A supersymmetric extension of the Kadomtsev-Petviashvili hierarchy. Comm. Math. Phys. 98 (1985), 6577.CrossRefGoogle Scholar
[12]Rogers., A. Integration of supermanifolds. In Mathematical Aspects of Superspace, ed. Seifert, H–J. et al. (Reidel, D., 1984), pp. 149160.CrossRefGoogle Scholar
[13]Wilson, G., Commuting flows and conservation laws for Lax equations. Math. Proc. Cambridge Philos Soc. 86 (1979), 131143.CrossRefGoogle Scholar
[14]Wilson., G.The modified Lax and two-dimensional Toda lattice equations associated with simple Lie algebras. Erogodic Theory and Dynamical Systems 1 (1981), 361380.CrossRefGoogle Scholar