Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T08:51:56.184Z Has data issue: false hasContentIssue false

Almost f-algebras and d-algebras

Published online by Cambridge University Press:  24 October 2008

S. J. Bernau
Affiliation:
Department of Mathematical Sciences, University of Texas at El Paso, El Paso, Texas 79968-0514, U.S.A.
C. B. Huijsmans
Affiliation:
Department of Mathematics, Rijksuniversiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands

Extract

In this paper we study the classes of almost f-algebras and d-algebras. Apart from a survey of known properties we present some ‘new’ properties of almost f-algebras and d-algebras and we consider their connection with f-algebras. To be more precise, we show, among other things, in an elementary intrinsic manner, that every Archimedean almost f-algebra is commutative. This result is a considerable improvement upon the fact that every Archimedean f-algebra is commutative. Furthermore, we give a description of the set of nilpotent elements in both an Archimedean d-algebra and an Archimedean almost f-algebra.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Basly, M. and Triki, A.. FF-Algèbres Archimédiennes réticulées. (Preprint, 1988.)Google Scholar
[2]Basly, M., Huijsmans, C. B., de Pagter, B. and Triki, A.. On unital Archimedean lattice-ordered algebras. J. Fac. Sci. Tunis (to appear).Google Scholar
[3]Bernau, S. J.. On semi-normal lattice rings. Proc. Cambridge Philos. Soc. 61 (1965), 613616.CrossRefGoogle Scholar
[4]Bigard, A., Keimel, K. and Wolfenstein, S.. Groupes et Anneaux Réticulés. Lecture Notes in Math. vol. 608 (Springer-Verlag, 1977).CrossRefGoogle Scholar
[5]Birkhoff, G.. Lattice Theory. 3rd Edition. Amer. Math. Soc. Colloq. Publ. no. 25 (American Mathematical Society, 1967).Google Scholar
[6]Birkhoff, G. and Pierce, R. S.. Lattice-ordered rings. An. Acad. Brasil. Ciènc. 28 (1956), 4169.Google Scholar
[7]Diem, J. E.. A radical for lattice-ordered rings. Pacific J. Math. 25 (1968), 7182.CrossRefGoogle Scholar
[8]Huijsmans, C. B. and de Pagter, B.. Ideal theory in f-algebras. Trans. Amer. math. Soc. 269 (1982), 225245.Google Scholar
[9]Huijsmans, C. B. and de Pagter, B.. Averaging operators and positive contractive projections. J. Math. Anal. Appl. 113 (1986), 163184.CrossRefGoogle Scholar
[10]Kudláček, V.. O některých typech 1-okruhu (on some types of l-rings). Sborní Vysokého Učeni Techn. υ Brně 1–2 (1962), 179181.Google Scholar
[11]Luxemburg, W. A. J.. Some Aspects of the Theory of Riesz Spaces. Univ. Arkansas Lecture Notes Math. vol. 4 (Fayetteville, 1979).Google Scholar
[12]Luxemburg, W. A. J. and Zaanen, A. C.. Riesz Spaces, vol. 1 (North-Holland, 1971).Google Scholar
[13]Martignon, L. F.. Banachverbandsalgebren. Ph.D. thesis, Universität Tübingen (1978).Google Scholar
[14]de Pagter, B.. F-Algebras and orthomorphisms. Ph.D. thesis, University of Leiden (1981).Google Scholar
[15]Quint, C.. Zur Darstelling von Banachverbandsalgebren. Ph.D. thesis, Universität Darmstadt (1984).Google Scholar
[16]Scheffold, E.. FF-Banachverbandsalgebren. Math. Z. 177 (1981), 193205.CrossRefGoogle Scholar
[17]Scorza, G.. Le algebre del 4° ordine. Mem. Reale Accad. Scienze Fis. Mat. Napoli (2) 20 (1935), n. 14;Google Scholar
Opere Scelte III (Edizioni Cremonese, 1962), 259–361.Google Scholar
[18]Steinberg, S. A.. On lattice-ordered rings in which the square of every element is positive. J. Austral. Math. Soc. Ser. A 22 (1976), 362370.CrossRefGoogle Scholar
[19]Steinberg, S. A.. Radical theory in lattice-ordered rings. In Gruppi e Anelli Ordinati, Symposia Math. XXI (Academic Press, 1977), pp. 379400.Google Scholar
[20]Viswanathan, T. M.. Ordered modules of fractions. J. Reine Angew. Math. 235 (1969), 78107.Google Scholar
[21]Zaanen, A. C.. Riesz Spaces, vol. 2 (North-Holland, 1983).Google Scholar