No CrossRef data available.
Abstract Köthe spaces. IV
Published online by Cambridge University Press: 24 October 2008
Extract
In this paper I investigate the completed projective tensor product of two perfect Riesz spaces, and show how a natural order structure on this renders it also a perfect Riesz space. Sections 7–14 contain interesting order-topological properties of this tensor product. Finally, section 15 describes how the tensor product of function spaces may be represented as a function space, in the manner of (1 b).
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 64 , Issue 1 , January 1968 , pp. 45 - 52
- Copyright
- Copyright © Cambridge Philosophical Society 1968
References
REFERENCES
(1)Fremlin, D. H.Abstract Köthe spaces. Proc. Cambridge Philos. Soc. (a) I; (b) II; (c) III.Google Scholar
(2)Luxemburg, W. A. J. and Zaanen, A. C.Notes on Banach function spaces. Nederl. Akad. Wetensch. Proc. Ser. A. (a) (Note VI) 66 (1963), 655–668. (b) (Note VIII) 67 (1964), 104–119.CrossRefGoogle Scholar
(3)Schwartz, L.Produits tensoriels topologiques, etc. (Seminar notes, mimeographed.) Secrétariat mathématique (Paris, 1954).Google Scholar
(4)Grothendieck, A.Produits tensoriels topologiques et espaces nucléaires. Mem. Amer. Math. Soc. 16 (1955).Google Scholar
(5)Nakano, H.Product spaces of semi-ordered linear spaces. J. Fac. Sci. Hokkaido University 12 (1953), 163–240; reprinted in Semi-ordered linear spaces (Tokyo, 1955; distributed by Maruzen).Google Scholar