Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T07:28:13.978Z Has data issue: false hasContentIssue false

Absolutely superficial sequences

Published online by Cambridge University Press:  24 October 2008

Ngô Viêt Trung
Affiliation:
Viên Toán hoc-Viên Khoa hoc Nghiã Đô, Tú Liêm, Hanoi, Vietnam

Extract

Let A be a local ring with maximal ideal m. Let M be a finitely generated module over A. Let a1 …, ar be a sequence of elements of m. Let qi denote the ideal (a1,…, ai), i = 1, …, r, and set q0 = 0A (the zero ideal of A), q = qr.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Abhyankar, S. S.Local rings of high embedding dimension. Amer. J. Math. 89 (1967), 10731077.CrossRefGoogle Scholar
(2)Barshay, J.Graded algebras of powers of ideals generated by A-sequences. J. Algebra 25 (1973), 9099.CrossRefGoogle Scholar
(3)Barshay, J.Generalized analytic independence. Proc. Amer. Math. Soc. 58 (1976), 3236.CrossRefGoogle Scholar
(4)Brodmann, M. Endlichkeit von lokalen Kohomologie-Moduln arithmetischer Aufblasungen. (Preprint.)Google Scholar
(5)Herrmann, H., Schmidt, R. and Vogel, W.Theorie der normalen Flachheit (Teubner-Text, Leipzig 1977.)Google Scholar
(6)Nesselmann, D.Über superficielle Systeme von Parametern. Math. Nachr. 88 (1979), 279283.CrossRefGoogle Scholar
(7)Ngô, Viêt Trung, Some criteria for Buchsbaum modules. Monatsh. Math. 90 (1980), 331337.Google Scholar
(8)Ngô, Viêt Trung, A characterization of two-dimensional unmixed local rings. Math. Proc. Cambridge Phil. Soc. 89 (1981), 237239.Google Scholar
(9)Ngô, Viêt Trung, On generalized analytic independence. Ark. Mat. (to appear).Google Scholar
(10)Ngô, Viêt Trung, On the associated graded ring of a Buchsbaum ring. Math. Nachr. (to appear).Google Scholar
(11)Nguyên Tu' Cu'o'Ńg, Schenzel P. and Ngô, Viêt Trung, Verallgemeinerte Cohen-Macaulay-Moduln. Math. Nachr. 85 (1978), 5773.Google Scholar
(12)Northcott, D. G. and Rees, D.Reduction of ideals in local rings. Proc. Cambridge Phil. Soc. 50 (1954), 145158.CrossRefGoogle Scholar
(13)Schenzel, P.Multiplizitäten in verallgemeinerten Cohen-Macaulay-Moduln. Math. Nachr. 88 (1979), 295306.CrossRefGoogle Scholar
(14)Schenzel, P., Stückrad, J. and Vogel, W. Foundations of Buchosdum modules and applications. Monograph (in preparation).Google Scholar
(15)Stückrad, J. and Vogel, W.Eine Verallgemeinerung der Cohen-Macaulay-Ringe und Anwendungen auf ein Problem der Multiplizitätstheorie. J. Math. Kyoto Univ. 13 (1973), 513528.Google Scholar
(16)Stückrad, J. and Vogel, W.Toward a theory of Buchsbaum singularities. Amer. J. Math. 100 (1978), 727746.CrossRefGoogle Scholar
(17)Valla, J.Remarks on generalized analytic independence. Math. Proc. Cambridge Phil. Soc. 85 (1979), 281289.CrossRefGoogle Scholar
(18)Zariski, O. and Samuel, P.Commutative algebra, vol. II (Springer-Verlag, New York, Heidelberg, Berlin 1975).Google Scholar