Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T07:33:59.591Z Has data issue: false hasContentIssue false

Absolute curvatures in integral geometry

Published online by Cambridge University Press:  24 October 2008

Adrian J. Baddeley
Affiliation:
Trinity College, Cambridge

Extract

Surface integrals of curvature arise naturally in integral geometry and geometrical probability, most often in connection with the Quermassintegrale or cross-section integrals of convex bodies. They enjoy many desirable properties, such as the ability to be determined by summing or averaging over lower-dimensional sections or projections. In fact the Quermassintegrale are the only functionals of convex bodies to meet certain, quite reasonable, requirements. The conclusion has often been drawn, especially in practical applications, that the Quermassintegrale and their associated curvature integrals have a canonical status to the exclusion of all other quantities.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Averback, P. and Baddeley, A. Spectrum of geometrical changes in human testicular disease. (In preparation.)Google Scholar
(2)Averback, P. and Wight, D.Seminiferous tubule hypercurvature: a newly-recognised common syndrome of human male infertility. Lancet, 27 01 (1979), pp. 181183.CrossRefGoogle ScholarPubMed
(3)Baddeley, A. and Averback, P. Stereological theory and practical measures of biological tubular structures. (Submitted for publication.)Google Scholar
(4)Blaschke, W.Vorlesungen über Integralgeometrie. (Leipzig, Teubner, 1936). (Reprinted Chelsea, N.Y. 1949).Google Scholar
(5)Bonnesen, T. and Fenchel, W.Theorie der konvexen Körper. Ergebnisse der Math. 3 (Berlin, Springer, 1934).Google Scholar
(6)Cartan, E. La théorie des groupes finis et continus et la géometrie différentielle traitées par la méthode du repère mobile. Cahiers Scientifiques, XVIII. (Paris, Gauthier-Villars, 1951).Google Scholar
(7)Chern, S.-S.On the kinematic formula in the Euclidean space of N dimensions. Amer. J. Math. 74 (1952), 227236.CrossRefGoogle Scholar
(8)De Hoff, R. T.The quantitative estimation of mean surface curvature. Trans. Metall. Soc. AIME 239 (1971), 617621.Google Scholar
(9)De Hoff, R. T. Stereological uses of the area tangent count. In Geometrical probability and biological structures. (Heidelberg, Springer-Verlag lecture notes in Biomathematics, no. 23 (1978).Google Scholar
(10)Federer, H.Curvature measures. Trans. Amer. Math. Soc. 93 (1959), 418491.CrossRefGoogle Scholar
(11)Federer, H.Geometric measure theory. (Springer-Verlag, 1969).Google Scholar
(12)Groemer, H.On the extension of additive functionals on classes of convex sets. Pacific J. Math. 75 (1978), 397410.CrossRefGoogle Scholar
(13)Hadwiger, H.Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. (Berlin, Springer-Verlag, 1957).CrossRefGoogle Scholar
(14)Hadwiger, H.Normale Körper im euklidischen Raum und ihre topologischen und metrischen Eigenschaften. Math. Z. 71 (1959), 121140.CrossRefGoogle Scholar
(15)Matheron, G.La formule de Steiner pour les érosions. J. Appl. Prob. 15 (1978), 126135.CrossRefGoogle Scholar
(16)Miles, R. E.Direct derivations of certain surface integral formulae for the mean projections of a convex set. Adv. Appl. Prob. 7 (1975), 818829.CrossRefGoogle Scholar
(17)Miles, R. E.Multidimensional perspectives on stereology. J. Microsc. 95 (1972), 181185.CrossRefGoogle Scholar
(18)Miles, R. E. and Davy, P. J.Precise and general conditions for the validity of a comprehensive set of stereological fundamental formulae. J. Microsc. 107 (1976), 211226.CrossRefGoogle Scholar
(19)Minkowski, H.Volumen und Oberfläche. Math. Ann. 57 (1903), 447495.CrossRefGoogle Scholar
(20)Moran, P. A. P.The probabilistic basis of stereology. Suppl. Adv. Appl. Prob. (1972), 6991.CrossRefGoogle Scholar
(21)Santaló, L. A. Mean values and curvatures. In Stochastic Geometry, ed. Harding, E. F. and Kendall, D. G. (Wiley, 1974).Google Scholar
(22)Santaló, L. A.Integral geometry and geometric probability. Addison-Wesley Encyclopaedia of Mathematics series, vol. 1. (1976)Google Scholar
(23)Schreiber, M.Differential forms: a heuristic introduction. (Springer-Verlag, 1977).CrossRefGoogle Scholar
(24)Spivak, M.Differential Geometry, vol. ii. (Boston, Mass., Publish or Perish, 1970).Google Scholar