No CrossRef data available.
Article contents
Uniformly bounded components of normality
Published online by Cambridge University Press: 01 July 2007
Abstract
Suppose that f(z) is a transcendental entire function and that the Fatou set F(f)≠∅. Setandwhere the supremum supU is taken over all components of F(f). If B1(f)<∞ or B2(f)<∞, then we say F(f) is strongly uniformly bounded or uniformly bounded respectively. We show that, under some conditions, F(f) is (strongly) uniformly bounded.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 143 , Issue 1 , July 2007 , pp. 85 - 101
- Copyright
- Copyright © Cambridge Philosophical Society 2007
References
REFERENCES
[1]Anderson, J. M. and Hinkkanen, A.. Unbounded domains of normality. Proc. Amer. Math. Soc. 126 (1998), no. 4, 3243–3252.CrossRefGoogle Scholar
[2]Baker, I. N.. Multiply connected domains of normality in iteration theory. Math. Z. 81 (1963), 206–214.CrossRefGoogle Scholar
[3]Baker, I. N.. Multiply connected domains of normality in iteration theory. Ann. Acad. Sci. Fenn. Ser. A.I. Math. 1 (1975), 277–283.CrossRefGoogle Scholar
[4]Baker, I. N.. The iteration of polynomials and transcendental entire functions. J. Austral. Math. Soc. Ser.A 30 (1981), 483–495.CrossRefGoogle Scholar
[5]Baker, I. N.. Wandering domains in the iteration of entire functions. Proc. London Math. Soc. 49 (1984), 563–576.CrossRefGoogle Scholar
[6]Baker, I. N.. Some entire functions with multiply connected wandering domains. Ergod. Th. Dynam. Sys. 5 (1985), 163–169.CrossRefGoogle Scholar
[7]Barry, P. D.. On the theorem of Besicovitch. Quart. J. Math. Oxford 14 (1963), 292–302.CrossRefGoogle Scholar
[8]Bergweiler, W.. Iteration of meromorphic functions. Bull. Amer. Math. Soc. 29 (1993), 151–188.CrossRefGoogle Scholar
[10]Fatou, P.. Sur l' itération des fonctions transcendentes entières. Acta Math. 47 (1926), 337–370.CrossRefGoogle Scholar
[11]Fuchs, W. H. J.. Proof of a conjecture of Polya concerning gap series. Illinois J. Math. 7 (1966), 661–667.Google Scholar
[12]Hua, X. H. and Yang, C. C.. Dynamics of Transcendental Functions (Gordon and Breach Science Publishers 1998).Google Scholar
[13]Hua, X. H. and Yang, C. C.. Fatou components of entire functions of small growth. Ergod. Th. Dynam. Sys. 19 (1999), 1281–1293.CrossRefGoogle Scholar
[14]Julia, G.. Mémoire sur l' iteration des fractions rationnelles. J. Math. Pures Appl. 1 (1918), 47–245.Google Scholar
[15]Kisaka, M. and Shishikura, M.. On multiply connected wandering domains of entire functions. To appear.Google Scholar
[16]Morosawa, S., Nishimura, Y., Taniguchi, M. and Ueda, T.. Holomorphic Dynamics (Cambridge University Press, 2000).Google Scholar
[18]Stallard, G. M.. The iteration of entire functions of small growth. Math. Proc. Camb. Phil. Soc. 114 (1993), 43–55.CrossRefGoogle Scholar
[19]Wang, X. L. and Yang, C. C.. On the wandering and Baker domains of transcendental entire functions. Intern. J. Bifur. Chaos. 14 (2004), no. 1, 321–327.CrossRefGoogle Scholar
[20]Wang, Y. F.. Bounded domains of the Fatou set of an entire function. Israel J. Math. 121 (2001), 55–60.CrossRefGoogle Scholar
[21]Wang, Y. F.. On the Fatou set of an entire function with gaps. Tohoku Math. J. 53 (2001), 163–170.CrossRefGoogle Scholar
[22]Zheng, J. H.. Singularities and wandering domains in iteration of meromorphic functions. Illinois J. Math. 44 (2000), 520–530.CrossRefGoogle Scholar
[23]Zheng, J. H.. On the non-existence of unbounded domains of normality of meromorphic functions. J. Math. Anal. Appl. 264 (2001), 479–494.Google Scholar
[24]Zheng, J. H.. On uniformly perfect boundary of stable domains in iteration of meromorphic functions II. Math. Proc. Camb. Phil. Soc. 132 (2002), 531–544.Google Scholar
[25]Zheng, J. H.. Singularities and limit functions in iteration of meromorphic functions. J. London Math. Soc. 67 (2003), 1–13.CrossRefGoogle Scholar
[26]Zheng, J. H. and Wang, S.. Boundedness of components of Fatou sets of entire and meromorphic functions. Indian J. Pure Appl. Math. 35 (2004), no. 10, 1137–1148.Google Scholar
[27]Zheng, J. H.. On multiply connected Fatou components in iteration of meromorphic functions. J. Math. Anal. Appl. 313 (2006), no. 1, 24–37.CrossRefGoogle Scholar