No CrossRef data available.
Published online by Cambridge University Press: 28 February 2022
We prove uniform bounds for the Petersson norm of the cuspidal part of the theta series. This gives an improved asymptotic formula for the number of representations by a quadratic form. As an application, we show that every integer
$n \neq 0,4,7 \,(\textrm{mod}\ 8)$
is represented as
$n= x_1^2 + x_2^2 + x_3^3$
for integers
$x_1,x_2,x_3$
such that the product
$x_1x_2x_3$
has at most 72 prime divisors.