Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T17:58:16.475Z Has data issue: false hasContentIssue false

T-systems of certain finite simple groups

Published online by Cambridge University Press:  24 October 2008

Martin J. Evans
Affiliation:
Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, U.S.A.

Extract

Let Fn be the free group of rank n freely generated by x1, x2,…, xn and write d(G) for the minimal number of generators of the finitely generated group G.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bochert, H.. Ueber die Casse der transitiven Substitutionengruppen. Math. Ann. 49 (1897), 131144.CrossRefGoogle Scholar
[2]Brenner, J. L. and Wiegold, James. Two-generator groups I. Michigan Math. J. 22 (1975), 5364.CrossRefGoogle Scholar
[3]Brenner, J. L., Guralnick, R. M. and Wiegold, James. Two-generator groups III. Contemp. Math. 33 (1984), 8289.CrossRefGoogle Scholar
[4]Brunner, A. M.. Transitivity systems of certain one-relator groups. In Proceedings of the Second International Conference on the Theory of Groups (Canberra, 1973), Lecture Notes in Math. vol. 372. (Springer-Verlag, 1974), PP. 131140.Google Scholar
[5]Dunwoody, M. J.. On T-systems of groups. J. Austral. Math. Soc. 3 (1963), 172179.CrossRefGoogle Scholar
[6]Dunwoody, M. J.. Nielsen transformations. In Computation Problems in Abstract Algebra. (Pergamon, 1970), pp. 4546.Google Scholar
[7]Evans, M. J.. Presentations of groups involving more generators than are necessary. Proc. London Math. Soc. (3). to appear.Google Scholar
[8]Gilman, R.. Finite quotients of the automorphism group of a free group. Canad. J. Math. 29 (1977), 541551.CrossRefGoogle Scholar
[9]Isaacs, I. M.. Character Theory of Finite Groups (Academic Press, 1976).Google Scholar
[10]Magnus, W., Karrass, A. and Solitar, D.. Combinatorial Group Theory (Interscience, 1966).Google Scholar
[11]Neumann, B. H. and Neumann, H.. Zwei Klassen charakteristischer Untergruppen und ihre Factorgruppen. Math. Nachr. 4 (1951), 106125.Google Scholar
[12]Suzuki, M.. On a class of doubly transitive groups. Ann. of Math. (2) 75 (1962), 105145.CrossRefGoogle Scholar
[13]Suzuki, M.. Group Theory, vol. 1 (Springer-Verlag, 1982).Google Scholar