No CrossRef data available.
Article contents
Triviality of the ℓ-class groups in $\mathbb{Z}_{p}$-extensions of $\mathbb{Q}(\sqrt{-1})$ for split primes p ≡ 1 modulo 4
Published online by Cambridge University Press: 12 May 2014
Abstract
In this paper we study the class numbers in the finite layers of certain non-cyclotomic $\mathbb{Z}$p-extensions of the imaginary quadratic field $\mathbb{Q}(\sqrt{-1})$, for all primes p ≡ 1 modulo 4. By studying the Mahler measure of elliptic units, we are able to show that there are only finitely many primes ℓ congruent to a primitive root modulo p2 that divide any of the class numbers in the $\mathbb{Z}$p-extension.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 157 , Issue 1 , July 2014 , pp. 169 - 188
- Copyright
- Copyright © Cambridge Philosophical Society 2014
References
REFERENCES
[1]Bauer, H.Numeriche bestimmung von Klassenzahlen reeller zyklischer zahlkörper. J. Number Theory 1 (1969), 161–162.Google Scholar
[2]Coates, J.Elliptic curves with complex multiplication and Iwasawa theory. Bull. London Math. Soc. 23 (1991), 321–350.Google Scholar
[3]Coates, J. and Sujatha, R. Cyclotomic fields and zeta values. Springer Monogr. Math. (2006).Google Scholar
[4]Coates, J. and Wiles, A.On p-adic L-functions and elliptic units. J. Austral. Math. Soc. Ser. A 26 (1978), 1–25.Google Scholar
[5]Cohn, H.A numerical study of Weber's real class number calculation I. Numer. Math. 2 (1960), 347–362.Google Scholar
[6]de Shalit, E.The Iwasawa theory of elliptic curves with complex multiplication. Perspect. Math. vol. 3 (1987).Google Scholar
[7]Fukuda, T. and Komatsu, K.Weber's class number problem in the cyclotomic $\mathbb{Z}$2-extension of $\mathbb{Q}$, III. Int. J. Number Theory 7 (6) (2011) 1627–1635.Google Scholar
[8]Goldstein, C. and Schappacher, N.Séries d'Eisenstein et fonctions L de courbes elliptiques à multiplication complexe. J. Reine Angew. Math. 327 (1981), 184–218.Google Scholar
[9]Horie, K.Ideal class groups of Iwasawa-theoretical abelian extensions over the rational field. J. London Math. Soc. 66 (2002), 257–275.CrossRefGoogle Scholar
[10]Horie, K. and Horie, M.The narrow class groups of some $\mathbb{Z}$p-extensions over the rationals. Acta Arith. 135 (2) (2008), 159–180.Google Scholar
[11]Horie, K. and Horie, M.The ideal class group of the $\mathbb{Z}$23-extension over the rational field. Abh. Math. Semin. Univ. Hambg. 80 (1) (2010), 47–57.Google Scholar
[12]Jensen, J. L. V. W.Sur un nouvel et important thorme de la theorie des fonctions. Acta Math. 22 (1899), 359–364.CrossRefGoogle Scholar
[13]Lamplugh, J. An analogue of the Washington–Sinnott theorem for elliptic curves with complex multiplication I, to appear.Google Scholar
[14]Lamplugh, J. An analogue of the Washington–Sinnott theorem for elliptic curves with complex multiplication II, to appear.Google Scholar
[15]Lang, S.Algebraic Number Theory, 2nd edition, Grad. Texts in Math., vol. 110, (Springer-Verlag, New York, Heidelberg, Berlin, 1994).Google Scholar
[16]Mahler, K.On some inequalities for polynomials in several variables. J. London Math. Soc. 37 (1962), 341–344.Google Scholar
[17]Masley, J.Class numbers of real cyclic number fields with small conductor. Compositio Math. 37 (1978), 297–319.Google Scholar
[18]Miller, J. Class numbers of totally real fields and applications to the Weber class number problem, preprint. http://www.math.rutgers.edu/~jcmiller/ClassNumbersAndWeberProblem.pdf.Google Scholar
[19]Morisawa, T.Mahler measure of the Horie unit and Weber's class number problem in the cyclotomic $\mathbb{Z}$3-extension of $\mathbb{Q}$. Acta Arith. 153 (2012) 35–49.CrossRefGoogle Scholar
[20]Morisawa, T. and Okazaki, R. Mahler measure and Weber's class number problem in the cyclotomic $\mathbb{Z}$p-extension of $\mathbb{Q}$ for prime numbers p. Tohoku Math. J., in press.Google Scholar
[21]Robert, G.Unités elliptiques et formules pour le nombre de classes des extensions abéliennes d'un corps quadratique imaginaire. Mém. Soci. Math. France. 36 (1973), 5–77.Google Scholar
[22]Silverman, J.The Arithmetic of Elliptic Curves. Grad. Texts in Math. 106 (Springer-Verlag, 1986).Google Scholar
[23]van der Linden, F.Class number computations of real abelian number fields. Math. Comp. 39 (1982), 693–707.Google Scholar
[24]Washington, L.The non-p-part of the class number in a cyclotomic $\mathbb{Z}$p-extension. Invent. Math. 49 (1978), 87–97.Google Scholar