Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T18:17:13.627Z Has data issue: false hasContentIssue false

Triple velocity correlations in isotropic turbulence

Published online by Cambridge University Press:  24 October 2008

R. W. Stewart
Affiliation:
Cavendish LaboratoryCambridge

Abstract

The triple velocity correlation, in turbulence produced by inserting a square-mesh grid near the beginning of the working section of a wind tunnel, has been measured for mesh Reynolds numbers of RM = 5300, 21,200 and 42,400 (RM = UM/ν, where U is the mean wind speed in the working section of the tunnel and M is the centre to centre spacing of the rods making up the grid; ν is the kinematic viscosity of air). At the lowest Reynolds number the correlation has been measured at distances downstream of the grid varying from 20 to 120M. This range covers practically all of the initial period of the decay of turbulence, where the turbulent intensity varies as t−1.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1951

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Taylor, G. I.Proc. Roy. Soc. A, 151 (1935), 421.Google Scholar
(2)Kármán, T. von and Howarth, L.Proc. Roy. Soc. A, 164 (1938), 192.Google Scholar
(3)Batchelor, G. K. and Townsend, A. A.Proc. Roy. Soc. A, 193 (1948), 539.Google Scholar
(4)Townsend, A. A.Australian J. Sci. Res. A, 1 (1948), 161.Google Scholar
(5)Zobel, O. J.Bell Syst. Tech. J. 2 (1923), 1.Google Scholar
(6)Batchelor, G. K. and Townsend, A. A.Proc. Roy. Soc. A, 190 (1947), 534.Google Scholar
(7)Kolmogoroff, A. N.C.R. Acad. Sci. U.R.S.S. 30 (1941), 301;Google Scholar
Kolmogoroff, A. N.C.R. Acad. Sci. U.R.S.S. 32 (1941), 16.Google Scholar
(8)Batchelor, G. K.Proc. Cambridge Phil. Soc. 43 (1947), 533.Google Scholar
(9)Batchelor, G. K.Proc. Roy. Soc. A, 195 (1949), 513.Google Scholar
(10)Batchelor, G. K. and Stewart, R. W.Quart. Appl. Math. 3 (1950), 1.Google Scholar
(11)Townsend, A. A.Proc. Cambridge Phil. Soc. 44 (1947), 560.CrossRefGoogle Scholar