Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T08:51:53.941Z Has data issue: false hasContentIssue false

Tb theorem on product spaces

Published online by Cambridge University Press:  28 March 2016

YONGSHENG HAN
Affiliation:
Department of Mathematics, Auburn University, Auburn, Alabama 36849-5310, U.S.A. e-mail: [email protected]
MING-YI LEE
Affiliation:
Department of Mathematics, National Central University, Chung-Li, Taiwan 320, Republic of China. e-mail: [email protected], [email protected]
CHIN-CHENG LIN
Affiliation:
Department of Mathematics, National Central University, Chung-Li, Taiwan 320, Republic of China. e-mail: [email protected], [email protected]

Abstract

In this paper, we prove a Tb theorem on product spaces $\mathbb{R}$n × $\mathbb{R}$m, where b(x1, x2) = b1(x1)b2(x2), b1 and b2 are para-accretive functions on $\mathbb{R}$n and $\mathbb{R}$m, respectively.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]David, G. and Journé, J.-L.. A boundedness criterion for generalised Calderón–Zygmund operators. Ann. of Math. 120 (1984), 371397.CrossRefGoogle Scholar
[2]David, G., Journé, J.-L. and Semmes, S.. Operateurs de Calderón–Zygmund, fonctions para-accretive et interpolation. Rev. Mat. Iberoamericana 1 (1985), no. 4, 156.Google Scholar
[3]Frazier, M. and Jawerth, B.. A discrete transform and decompositions of distribution spaces J. Funct. Anal. 93 (1990), 34170.Google Scholar
[4]Fefferman, C. and Stein, E. M.. Some maximal inequalities. Amer. J. Math. 93 (1971), 107115.Google Scholar
[5]Han, Y.. Calderón-type reproducing formula and the Tb theorem. Rev. Mat. Iberoamericana 10 (1994), 5191.Google Scholar
[6]Han, Y., Lee, M.-Y., Lin, C.-C. and Lin, Y.-C.. Calderón–Zygmund operators on product Hardy spaces. J. Funct. Anal. 258 (2010), 28342861.Google Scholar
[7]Long, R.-L. and Zhu, X.-X.. L 2-boundedness of some singular integral operators on product domains. Sci. China Ser. A 36 (1993), 538549.Google Scholar
[8]Journé, J.-L.. Calderón–Zygmund operators on product spaces. Rev. Mat. Iberoamericana 1 (1985), 5591.Google Scholar
[9]McIntosh, A. and Meyer, Y.. Algèbres d'opérateurs définis par intégrales singulières. C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 395397.Google Scholar
[10]Ou, Y.. A T(b) theorem on product spaces. Trans. Amer. Math. Soc. 367 (2015), 61596197.Google Scholar