Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T20:58:13.435Z Has data issue: false hasContentIssue false

Symmetry adapted functions for double point groups. I. Non-cubic point groups

Published online by Cambridge University Press:  24 October 2008

Arthur P. Cracknell
Affiliation:
Department of Physics, University of Essex, Wivenhoe Park, Colchester, Essex

Abstract

Basis functions are derived and tabulated for the double-valued representations of the triclinic, monoclinic, orthorhombic, trigonal, tetragonal and hexagonal crystallographic point groups using the method of projection operators.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Altmann, S. L.On the symmetries of spherical harmonics. Proc. Cambridge. Philos. Soc. 53 (1957), 343367.CrossRefGoogle Scholar
(2)Altmann, S. L. and Bradley, C. J.On the symmetries of spherical harmonics. Philos. Trans. Roy. Soc. London Ser. A 255 (1963), 199215.Google Scholar
(3)Altmann, S. L. and Cracknell, A. P.Lattice harmonics I. Cubic groups. Rev. Modern Phys. 37 (1965), 1932.CrossRefGoogle Scholar
(4)Bell, D. G.Group theory and crystal lattices. Rev. Modern Phys. 26 (1954), 311320.CrossRefGoogle Scholar
(5)Bethe, H. A.Termaufspaltung in Kristallen. Ann. Physik. 3 (1929), 133208.CrossRefGoogle Scholar
(6)Cracknell, A. P. and Wong, K. C.Double-valued corepresentations of magnetic point groups. Austral. J. Phys. 20 (1967), 173188.CrossRefGoogle Scholar
(7)Koster, G. F., Dimmock, J. O., Wheeler, R. G. and Statz, H.Properties of the thirty-two point groups (M.I.T. Press; Cambridge, Mass., 1963).Google Scholar
(8) von der Lage, F. C. and Bethe., H. A.A method for obtaining electronic eigenfunctions and eigenvalues in solids with an application to sodium. Phys. Rev. 71 (1947), 612622.CrossRefGoogle Scholar
(9)Loucks, T. L.Relativistic electronic structure in crystals. I. Theory. Phys. Rev. 139 (1965), A1333–A1337.CrossRefGoogle Scholar
(10)Onodera, Y. and Okazaki, M.Relativistic theory for energy-band calculation. J. Phys. Soc. Japan 21 (1966), 12731281.CrossRefGoogle Scholar
(11)Onodera, Y. and Okazaki, M.Tables of basis functions for double point groups. J. Phys. Soc. Japan 21 (1966), 24002408.CrossRefGoogle Scholar
(12)Opechowski, W.Sur les groupes crystallographiques ‘doubles’. Physica 7 (1940), 552562.CrossRefGoogle Scholar
(13)Teleman, E. and Glodeanu, A.Basis functions for the double groups Oh and D3h. Rev. Roumaine Phys. 12 (1967), 551560.Google Scholar
(14)Temple, G.Cartesian tensors, an introduction (Methuen; London, 1960).Google Scholar
(15)Wigner, E. P.Group theory and its application to the quantum mechanics of atomic spectra (Academic Press; New York, 1959).Google Scholar