Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T21:19:51.383Z Has data issue: false hasContentIssue false

Structure theory for L*-algebras

Published online by Cambridge University Press:  24 October 2008

José Antonio Cuenca Mira
Affiliation:
Departamento de Algebra, Geometría y Topología, Universidad de Málaga, Apartado 59. 29080, Málaga, Spain
Amable García Martín
Affiliation:
Departamento de Algebra, Geometría y Topología, Universidad de Málaga, Apartado 59. 29080, Málaga, Spain
Cándido Martín González
Affiliation:
Departamento de Algebra, Geometría y Topología, Universidad de Málaga, Apartado 59. 29080, Málaga, Spain

Abstract

The structure theory of separable complex L*-algebras was given by Schue in [10] and [11]. In [3] Balachandran makes a study of infinite-dimensional complex topologically simple L*-algebras of classical type and poses the question whether these algebras exhaust the class of all infinite-dimensional complex topologically simple L*-algebras. In this paper we give an affirmative answer by determining all the complex topologically simple infinite-dimensional L*-algebras. The case of the real L*-algebras was studied previously in [4], [9] and [12] also under the separability condition. Applying the result of Balachandran, our result yields the structure theory for real L*-algebras. The main tool used here is the ‘approximation’ of the L*-algebra by topologically simple separable L*-algebras via an ultraproduct construction.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ambrose, W.. Structure theorems for a special class of Banach algebras. Trans. Amer. Math. Soc. 57 (1945), 364386.CrossRefGoogle Scholar
[2]Balachandran, V. K.. Simple systems of roots in L*-algebras. Trans. Amer. Math. Soc. 130 (1968), 513524.Google Scholar
[3]Balachandran, V. K.. Simple L*-algebras of classical type. Math. Ann. 180 (1969), 205219.CrossRefGoogle Scholar
[4]Balachandran, V. K.. Real L*-algebras. Indian J. Pure Appl. Math. 3 (1972), 12241246.Google Scholar
[5]Cabrera, M., Martinez, J. and Rodriguez, A.. A note on real H*-algebras. Math. Proc. Cambridge Philos. Soc. 105 (1989), 131132.CrossRefGoogle Scholar
[6]Cuenca Mira, J. A. and Rodriguez Palacios, A.. Isomorphisms of H*-algebras. Math. Proc. Cambridge Philos. Soc. 97 (1985), 9399.CrossRefGoogle Scholar
[7]Cuenca Mira, J. A. and Rodriguez Palacios, A.. Structure theory for noncommutative Jordan H*-algebras. J. Algebra 105 (1987), 000000.Google Scholar
[8]Cuenca Mira, J. A. and Sanchez Sanchez, A.. Structure theory for real noncommutative Jordan H*-algebras. (Preprint.)Google Scholar
[9]de la Harpe, P.. Classification des H*-algèbres semi-simples réelles séparables. C.R. Acad. Sci. Paris Ser. A 272 (1971), 15591561.Google Scholar
[10]Schue, J. R.. Hilbert space methods in the theory of Lie algebras. Trans. Amer. Math. Soc. 95 (1960), 6980.CrossRefGoogle Scholar
[11]Schue, J. R.. Cartan decompositions for L*-algebras. Trans. Amer. Math. Soc. 98 (1961), 334349.Google Scholar
[12]Unsain, I.. Classification of the simple separable real H*-algebras. J. Differential Geom. 7 (1972), 423451.CrossRefGoogle Scholar