Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T07:50:34.650Z Has data issue: false hasContentIssue false

Stable geometric properties of analytic and harmonic functions

Published online by Cambridge University Press:  04 June 2013

RODRIGO HERNÁNDEZ
Affiliation:
Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar, Chile. e-mail: [email protected]
MARÍA J. MARTÍN
Affiliation:
Departamento de Matemáticas, Universidad Autónoma de Madrid, Módulo 17 (Edificio de Ciencias), 28049 Madrid, Spain. e-mail: [email protected] URL: http://www.uam.es/mariaj.martin

Abstract

Given any sense preserving harmonic mapping f=h+ḡ in the unit disk, we prove that for all |λ|=1 the functions fλ=h+λḡ are univalent (resp. close-to-convex, starlike, or convex) if and only if the analytic functions Fλ=h+λg are univalent (resp. close-to-convex, starlike, or convex) for all such λ. We also obtain certain necessary geometric conditions on h in order that the functions fλ belong to the families mentioned above. In particular, we see that if fλ are univalent for all λ on the unit circle, then h is univalent.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]de Branges, L.A proof of the Bieberbach conjecture. Acta Math. 154 (1985), no. 1–2, 137152.CrossRefGoogle Scholar
[2]Clunie, J. and Sheil–Small, T.Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. 9 (1984) 325.Google Scholar
[3]Chuaqui, M., Duren, P. L. and Osgood, B.Curvature properties of planar harmonic mappings. Comput. Methods Funct. Theory 4 (2004), no. 1, 127142.CrossRefGoogle Scholar
[4]Chuaqui, M. and Hernández, R.Univalent harmonic mappings and linearly connected domains. J. Math. Anal. Appl. 332 (2007), no. 2, 11891194.CrossRefGoogle Scholar
[5]Duren, P.Univalent Functions (Springer-Verlag, New York, 1983).Google Scholar
[6]Duren, P.Harmonic Mappings in the Plane (Cambridge University Press, Cambridge, 2004).CrossRefGoogle Scholar
[7]Kalaj, D.Quasiconformal harmonic mappings and close to convex domains. Filomat 24 (2010), no. 1, 6368.CrossRefGoogle Scholar
[8]Kaplan, W.Close-to-convex schlicht functions. Michigan Math. J. 1 (1952), 169185.CrossRefGoogle Scholar
[9]Lewy, H.On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Amer. Math. Soc. 42 (1936), 689692.CrossRefGoogle Scholar
[10]Pommerenke, Ch.Univalent Functions (Vandenhoeck & Ruprecht, Göttingen, 1975).Google Scholar