Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T11:06:38.449Z Has data issue: false hasContentIssue false

The Spectral resolution of Watson transforms

Published online by Cambridge University Press:  24 October 2008

Edwin J. Akutowicz
Affiliation:
Massachusetts Institute of Technology

Extract

If φ belongs to L2(0, ∞), the Watson transform W φ of φ is defined by

where k(u)/u belongs to L2(0, ∞) and

The operator W is unitary in L2(0, ∞), and its inverse is given by

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Doetsch, G.Die Eigenwerte und Eigenfunktionen von Integral-transformationen. Math. Ann. 117 (1939).Google Scholar
(2)Pollard, H.Integral transforms. Duke Math. J. 13 (1946).CrossRefGoogle Scholar
(3)Plessner, A. and Rokhlin, V.Spectral theory of linear operators. Uspehi Mat. Nauk, 1 (N.S.), 1946.Google Scholar
(4)Murray, F. J.Linear transformations in Hilbert Space (Princeton, 1941).Google Scholar
(5)Nagy, Béla v. Sz.Spektraldarstellung Linearer Transformationen des Hilbertschen Raumes (Berlin, 1942).CrossRefGoogle Scholar
(6)Nevastlinna, F. and Nieminen, T.Das Poisson-Stieltjessche Integral und seine Anwendung in der Spektraltheorie des Hilbertschen Raumes. Ann. Acad. Sci. Fenn. No. 207 (1955).Google Scholar