Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T19:16:57.663Z Has data issue: false hasContentIssue false

Some remarks on Schottky's theorem

Published online by Cambridge University Press:  24 October 2008

W. K. Hayman
Affiliation:
St John's College, Cambridge

Extract

1. We denote by the class of all functions regular in |z| < 1, and never taking the values 0 or 1 in |z| < 1. Then Schottky's(1) theorem states:

Theorem A. Let f(z) = a0 + a1z + … belong to . Then

and hence

where

and the constantsK(a0), K(a0,ρ) depend only on the quantities indicated.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1947

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

(1)Schottky, F. S.B.Preuss. Akad. Wiss. (1904), Math.-Phys. K1 pp. 12441262.Google Scholar
(2)Bohr, H. and Landau, E.Nachr. Ges. Wiss. Göttingen (1910), Math.-Phys. K1. pp. 303–30.Google Scholar
(3)Valiron, G.Bull. Sci. Math. 51 (1927), 167183.Google Scholar
(4)Ostrowsky, A.Studien über den Schottkyschen Salz (Basel, 1931).Google Scholar
(5)PflÜger, A. P.Commentarii Mathematici Helvetici, 7 (1935), 159–70.Google Scholar
(6)For an introduction to these expressions see R., Nevanlinna, Eindeutige Analytische Functionen (Berlin, 1936), chapters I–III. The ideas followed in this paper are very largely due to Nevanlinna.Google Scholar
(7)See, for example, Bieberbach, L., Lehrbuch der Functionentheorie, Vol. 2, chap. I.Google Scholar
(8)See, for example, Littlewood, J. E., Lectures on the Theory of Functions (Oxford, 1944), pp. 163et seq., where the theory of subordination is discussed.Google Scholar
(9)Ahlfors, L. V., Trans. Amer. Math. Soc. 43 (1938), 359364. The method used is extremely simple and elegant and does not depend on the modular function.Google Scholar