Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T02:54:27.303Z Has data issue: false hasContentIssue false

Small Riesz spaces

Published online by Cambridge University Press:  04 October 2011

G. Buskes
Affiliation:
University of Mississippi, Mississippi MS 38677, U.S.A.
A. van Rooij
Affiliation:
Katholieke Universiteit, 6525 ED Nijmegen, The Netherlands

Extract

Many facts in the theory of general Riesz spaces are easily verified by thinking in terms of spaces of functions. A proof via this insight is said to use representation theory. In recent years a growing number of authors has successfully been trying to bypass representation theorems, judging them to be extraneous. (See, for instance, [9,10].) In spite of the positive aspects of these efforts the following can be said. Firstly, avoiding representation theory does not always make the facts transparent. Reading the more cumbersome constructions and procedures inside the Riesz space itself one feels the need for a pictorial representation with functions, and one suspects the author himself of secret heretical thoughts. Secondly, the direct method leads to repeating constructions of the same nature over and over again.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abramovich, Y. A.. Multiplicative representation of disjointness preserving operators. Indag. Math. 45 (1983), 265297.CrossRefGoogle Scholar
[2] Aliprantis, C. D. and Burkinshaw, O.. Positive Operators (Academic Press, 1985).Google Scholar
[3] Bernau, S. J.. Orthomorphisms of Archimedean vector lattices. Math. Proc. Cambridge Philos. Soc. 89 (1981), 119128.CrossRefGoogle Scholar
[4] F, Beukers and Huijsmans, C. B.. Calculus in f-algebras. J. Austral. Math. Soc. Ser. A 37 (1984), 110116.Google Scholar
[5] Bishop, E. and Bridges, D.. Constructive Analysis (Springer-Verlag, 1985).CrossRefGoogle Scholar
[6] Bigard, A., Keimel, K. and Wolfenstein, S.. Groupes et Anneaux réticulés. Lecture Notes in Math. vol. 608 (Springer-Verlag, 1977).CrossRefGoogle Scholar
[7] Buskes, G. and Van Rooij, A.. Riesz spaces and the prime ideal theorem. (Preprint.)Google Scholar
[8] Duhoux, M. and Meyer, M.. A new proof of the lattice structure of orthomorphisms. J. London Math. Soc. (2) 25 (1982), 375378.CrossRefGoogle Scholar
[9] Huijsmans, C. B. and de Pagter, B.. Ideal theory in f-algebras. Trans. Amer. Math. Soc. 269 (1982), 225245.Google Scholar
[10] Huijsmans, C. B. and de Pagter, B.. Subalgebras and Riesz subspaces of an f-algebra. Proc. London Math. Soc. (3) 48 (1984), 161174.CrossRefGoogle Scholar
[11] Johnstone, P. T.. Stone Spaces. Cambridge Studies in Advanced Math. no. 3 (Cambridge University Press, 1982).Google Scholar
[12] Krivine, J. L.. Théorème de Factorisation dans les Espaces Réticulés. Séminaire Maurey-Schwartz, Exposés 2223 (1973).Google Scholar
[13] Kutateladze, S. S.. Support set for sublinear operators. Soviet Math. 17 (1976), 14281431.Google Scholar
[14] Lipecki, Z.. Extension of vector lattice homomorphisms. Proc. Amer. Math. Soc. 79 (1980), 247248.CrossRefGoogle Scholar
[15] Lindenstrauss, J. and Tzafriri, L.. Classical Banach Spaces, vol. 2 (Springer-Verlag, 1979).CrossRefGoogle Scholar
[16] Luxemburg, W. A.J., Some Aspects of the Theory of Riesz Spaces. Univ. Arkansas Lecture Notes Math. Sci. no. 4 (Wiley, 1979).Google Scholar
[17] Luxemburg, W. A. J. and Schep, A. R.. An extension theorem for Riesz homomorphisms. Indag. Math. 41 (1979), 145154.CrossRefGoogle Scholar
[18] Luxemburg, W. A. J. and Zaanen, A. C.. Riesz Spaces, vol. 1 (North-Holland Publishing Company, 1971).Google Scholar
[19] McPolin, P. T. N. and Wickstead, A. W.. The order boundedness of band preserving operators on uniformly complete vector lattices. Math. Proc. Cambridge Philos. Soc. 97 (1985), 481487.CrossRefGoogle Scholar
[20] de Pagter, B.. Calculus in f-algebras. (Preprint.)Google Scholar
[21] de Pagter, B.. f-algebras and orthomorphisms. Ph.D. thesis, Leiden University (1981).Google Scholar
[22] de Pagtee, B.. A note on disjointness preserving operators. Proc. Amer. Math. Soc. 90 (1984), 543549.CrossRefGoogle Scholar
[23] Pták, V.. On a Theorem of Mazur and Orlicz. Studia Math. 15 (1956), 365366.CrossRefGoogle Scholar
[24] Schep, A. R.. Positive diagonal and triangular operators. J. Operator Theory 3 (1980), 165178.Google Scholar
[25] Sikorski, R.. On a theorem of Mazur and Orlicz. Studia Math. 14 (1953), 180182.CrossRefGoogle Scholar
[26] Simons, S.. Extended and sandwich versions of the Hahn-Banaeh theorem. J. Math. Anal. Appl. 21 (1968), 112122.CrossRefGoogle Scholar
[27] Vulikh, B. Z.. Introduction to the Theory of Partially Ordered Spaces (Wolters-Noordhoff, 1967).Google Scholar
[28] Wickstead, A. W.. Extensions of orthomorphisms. J. Austral. Math. Soc. Ser. A 29 (1980), 8798.CrossRefGoogle Scholar
[29] Zaanen, A. C.. Riesz Spaces, vol. 2 (North-Holland Publishing Company, 1983).Google Scholar