Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T07:31:07.712Z Has data issue: false hasContentIssue false

The Smale invariants of an immersed projective space

Published online by Cambridge University Press:  24 October 2008

A. J. Berrick
Affiliation:
Imperial College, London

Extract

This note approaches the immersion/embedding problem for real projective n-space Pn in Rn+k by viewing the Smale invariant of the induced immersion SnPnRn + k as an obstruction to extending to an immersion of Pn + 1 in Rn + k. First steps in this direction were taken in (8), by studying the elementary problem of extending axial maps.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Adams, J. F.Vector fields on spheres. Bull. Amer. Math. Soc. 68 (1962), 3941.CrossRefGoogle Scholar
(2)Adem, J.Some immersions associated with bilinear maps. Bol. Soc. Mat. Mexicana 13 (1968), 95104.Google Scholar
(3)Adem, J., Gitler, S. and James, I. M.On axial maps of a certain type. Bol. Soc. Mat. Mexicana (2) 17 (1972), 5962.Google Scholar
(4)Adem, J., Gitler, S. and Mahowald, M.Embedding and immersion of projeetive spaces. Bol. Soc. Mat. Mexicana (2) 10 (1965), 8488.Google Scholar
(5)Atiyah, M. F. and Dupont, J. L.Vector fields with finite singularities. Acta Math. 128 (1972), 140.CrossRefGoogle Scholar
(6)Barratt, M. G. and Mahowald, M. E.The metastable homotopy of O(n). Bull. Amer. Math. Soc. 70 (1964), 758760.CrossRefGoogle Scholar
(7)Berrick, A. J.Axial maps with further structure. Proc. Amer. Math. Soc. 54 (1976), 413416.CrossRefGoogle Scholar
(8)Berrick, A. J.Induction on symmetric axial maps and emboddings of projeetive spaces. Proc. Amer. Math. Soc. 60 (1976), 276278.CrossRefGoogle Scholar
(9)Berrick, A. J. Consequences of the Kahn-Priddy theorem in homotopy and geometry. (To appear.)Google Scholar
(10)Berrick, A. J., Feder, S. and Gitler, S.Symmetric axial maps and embeddings of projeetive spaces. Bol. Soc. Mat. Mexicana (2).Google Scholar
(11)Bredon, G. E. Equivariant cohomology theories. Lecture Notes in Math. 34 (Berlin, Springer-Verlag, 1967).Google Scholar
(12)Bredon, G. E.Representations at fixed points of smooth actions of compact groups. Ann. of Math. 89 (1969), 515532.CrossRefGoogle Scholar
(13)Brown, E. H. JrA remark concerning immersions of Sn in R2n. Quart. J. Math. Oxford, Ser. 2, 24 (1973), 559–60.CrossRefGoogle Scholar
(14)Conner, P. E. and Floyd, E. E.Fixed point free involutions and equivariant maps. Bull. Amer. Math. Soc. 66 (1960), 416441.CrossRefGoogle Scholar
(15)Conner, P. E. and Floyd, E. E.Torsion in SU-bordism. Mem. Amer. Math. Soc. 60 (1966).Google Scholar
(16)Crabb, M. C. and Steer, B.Vector bundle monomorphisms with finite singularities. Proc. London Math. Soc. (3) 30 (1975), 139.CrossRefGoogle Scholar
(17)Davis, D. M. and Mahowald, M. E.The geometric dimension of some vector bundles over projective spaces. Trans. Amer. Math. Soc. 205 (1975), 295315.CrossRefGoogle Scholar
(18)Davis, D. M. and Mahowald, M. E.The immersion conjecture for ℝP 81+7 is false. Trans. Amer. Math. Soc. 236 (1978), 361383.Google Scholar
(19)Epstein, D. B. A. and Schwarzenberger, R. L. E.Imbeddings of real projective spaces. Ann. of Math. (2) 76 (1962), 180184.CrossRefGoogle Scholar
(20)Gitler, S.The projective Stiefel manifolds. II. Applications. Topology 7 (1968), 4753.CrossRefGoogle Scholar
(21)Gitler, S.Immersion and embeddings of manifolds. Proc. Symp. Pure Math. 22 (Providence R.I., A.M.S. 1971), 8796.CrossRefGoogle Scholar
(22)Gitler, S. and Mahowald, M.Some immersions of real projective spaces. Bol. Soc. Mat. Mexicana (2) 14 (1969), 921.Google Scholar
(23)Haefliger, A.Plongements différentiables des variétés dans variétés. Comment. Math. Helv. 36 (1962), 4782.CrossRefGoogle Scholar
(24)Haefliger, A. and Hirsch, M. W.Immersions in the stable range: Ann. of Math. (2) 75 (1962), 231241.CrossRefGoogle Scholar
(25)Hirsch, M. W.Immersions of manifolds. Trans. Amer. Math. Soc. 93 (1959), 242276.CrossRefGoogle Scholar
(26)Hoo, C. S. and Mahowald, M. E.Some homotopy groups of Stiefel manifolds. Bull. Amer. Math. Soc. 71 (1965), 661667.CrossRefGoogle Scholar
(27)James, I. M.On the immersion problem for real projective spaces. Bull. Amer. Math. Soc. 69 (1963), 231238.CrossRefGoogle Scholar
(28)James, I. M.Bundles with special structure: I. Ann. of Math. 89 (1969), 359390.CrossRefGoogle Scholar
(29)James, I. M.The topology of Stiefel manifolds, London Math. Soc. Lecture Notes 24 (Cambridge University Press, 1976).Google Scholar
(30)Kervaire, M. A.Sur le fibré normal à une sphère immergée dans un espace euclidien. Comment Math. Helv. 33 (1959), 121131.CrossRefGoogle Scholar
(31)Kervaire, M. A.Sur l'invariant de Smale d'un plongement. Comment Math. Helv. 34 (1960), 127139.CrossRefGoogle Scholar
(32)Kervaire, M. A.Some nonstable homotopy groups of Lie groups. Illinois J. Math. 4 (1960), 161169.CrossRefGoogle Scholar
(33)Lam, K. Y.Construction of nonsingular bilinear maps. Topology 6 (1967), 423426.CrossRefGoogle Scholar
(34)Larmore, L. L. and Rigdon, R.numerating immersions and embeddings of projective spaces. Pacific J. Math. 64 (1976), 471492.CrossRefGoogle Scholar
(35)Mahowald, M. E.The metastable homotopy of Sn. Mem. Amer. Math. Soc. 72 (1967).Google Scholar
(36)Mahowald, M. E.On the metastable homotopy of O(n). Proc. Amer. Math. Soc. 19 (1968), 639641.Google Scholar
(37)Mahowald, M. and Milgram, J.Embedding real projective spaces. Ann. of Math. (2) 87 (1968), 411422.CrossRefGoogle Scholar
(38)Milgram, R. J. and Zvengrowski, P.kewness of r-fields on spheres. Topology 15 (1976), 325335.CrossRefGoogle Scholar
(39)Munkres, J. R. Elementary differential topology. Ann. of Math. Studies 54 (Princeton University Press, 1966, rev. ed.).Google Scholar
(40)Sanderson, B. J.A non-immersion theorem for real projective spaces. Topology 2 (1963), 209211.CrossRefGoogle Scholar
(41)Sanderson, B. J.Immersions and embeddings of projective spaces. Proc. London Math. Soc. (3) 14 (1964), 137153.CrossRefGoogle Scholar
(42)Smale, S.The classification of immersions of spheres in euclidean spaces. Ann. of Math. (2) 69 (1959), 327344.CrossRefGoogle Scholar
(43)Steer, B.On the embedding of projective spaces in Euclidean space. Proc. London Math. Soc. (3) 31 (1970), 489501.CrossRefGoogle Scholar
(44)Thomas, E.Embedding manifolds in Euclidean space. Osaka J. Math. 13 (1976), 163186.Google Scholar
(45)Whitney, H.The self-intersections of a smooth n-manifold in 2n-space. Ann. of Math. (2) 45 (1944), 220246.CrossRefGoogle Scholar