Article contents
Sharp embeddings of Bessel potential spaces with logarithmic smoothness
Published online by Cambridge University Press: 01 May 2003
Abstract
We derive simple conditions, which are both necessary and sufficient, for the validity of sharp local embeddings $H^{\sigma,\alpha} X({\bf R}^{n}) \hookrightarrow Y({\bf {\Omega})$ and sharp global embeddings $H^{\sigma,\alpha}, X({\bf R}^{n}) \hookrightarrow Z({\bf R}^{n})$. Here $H^{\sigma,\alpha}$, stands for a Bessel potential operator involving the classical smoothness $\alpha$ and logarithmic smoothness $\alpha$, X, Y and Z are (generalized) Lorentz–Zygmund spaces, and $\Omega\subset {\bf R^{n}}$ is an open subset whose n-dimensional Lebesgue measure is finite. Our results extend those of [18] and improve them especially in the extreme cases when X is close to L1, or Y and Z are close to $L^{\infty}$, or when $\sigma=0$ and $\alpha > 0$.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 134 , Issue 2 , March 2003 , pp. 347 - 384
- Copyright
- 2003 Cambridge Philosophical Society
- 10
- Cited by