Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T19:20:17.501Z Has data issue: false hasContentIssue false

Sequences with bounded logarithmic discrepancy

Published online by Cambridge University Press:  24 October 2008

R. C. Baker
Affiliation:
Department of Mathematics, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX
G. Harman
Affiliation:
School of Mathematics, University of Wales College of Cardiff, Senghenydd Road, Cardiff CF2 4AG

Extract

Let {α} denote the fractional part of the real number α. Write χ(x, y) = 1 for {x} < y and χ(x, y) = 0 otherwise. A real sequence (xn) is uniformly distributed (mod 1) if

It is a consequence of (1·1) that DN = o(N),

Where

is the discrepancy of the sequence (xn).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baker, R. C.. Diophantine Inequalities (Oxford University Press, 1986).Google Scholar
[2]Davenport, H.. Multiplicative Number Theory, revised by Montgomery, H. L. (Springer-Verlag, 1980).CrossRefGoogle Scholar
[3]Hlawka, E.. Gleichverteilung und Konvergenzverhalten von Potenzreihen am Rande des Konvergenzkreises. Manuscripta Math. 44 (1983), 231263.CrossRefGoogle Scholar
[4]Schmidt, W. M.. Irregularities of distribution. VII. Acta Arith. 21 (1972), 4550.CrossRefGoogle Scholar
[5]Tichy, R.. and Turnwald, G.. Logarithmic uniform distribution of(αn + β log n). Tsukuba Math. J. 10 (1986), 351366.Google Scholar
[6]Titchmarsh, E. C.. The Theory of the Riemann Zeta-function, revised by D. R. Heath-Brown (Oxford University Press, 1986).Google Scholar
[7]Tsuji, M.. On the uniform distribution of numbers mod 1. J. Math. Soc. Japan 4 (1952), 313322.CrossRefGoogle Scholar