Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T19:01:25.107Z Has data issue: false hasContentIssue false

Selmer Groups and Anticyclotomic Zp -extensions

Published online by Cambridge University Press:  12 May 2016

AHMED MATAR*
Affiliation:
Department of Mathematics, University of Bahrain, P.O. Box 32038, Sukhair, Bahrain. e-mail: [email protected]

Abstract

Let E/Q be an elliptic curve, p a prime and K /K the anticyclotomic Zp -extension of a quadratic imaginary field K satisfying the Heegner hypothesis. In this paper we give a new proof to a theorem of Bertolini which determines the value of the Λ-corank of Selp (E/K ) in the case where E has ordinary reduction at p. In the case where E has supersingular reduction at p we make a conjecture about the structure of the module of Heegner points mod p. Assuming this conjecture we give a new proof to a theorem of Ciperiani which determines the value of the Λ-corank of Selp (E/K ) in the case where E has supersingular reduction at p.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bertolini, M. Selmer groups and Heegner points in anticyclotomic Zp -extensions. Compositio Math. 99 (1995), 153182.Google Scholar
[2] Bertolini, M. and Darmon, H. Kolyvagin's descent and Mordell-Weil groups over ring class fields. J. Reine Angew. Math. 412 (1990), 6374.Google Scholar
[3] Bourbaki, N. Algébre: Chapitre 8, second edition (Springer, 2012).Google Scholar
[4] Breuil, C., Conrad, B., Diamond, F. and Taylor, R. On the modularity of elliptic curves over Q: Wild 3-adic exercises. J. Amer. Math. Soc. 14 (2001), 843939.CrossRefGoogle Scholar
[5] Brink, D. Prime decomposition in the anti-cyclotomic extensions. Mathematics of Computation. 76 (2007), no. 260, 21272138.CrossRefGoogle Scholar
[6] Ciperiani, M. Tate-Shafarevich groups in anticyclotomic Zp -extensions at supersingular primes. Compositio Math. 145 (2009), 293308.CrossRefGoogle Scholar
[7] Ciperiani, M. and Wiles, A. Solvable points on genus one cuves. Duke Math. J. 142 (2008), 381464.Google Scholar
[8] Coates, J. and Greenberg, R. Kummer theory for abelian varieties over local fields. Invent. Math. 124 (1996), 129174.CrossRefGoogle Scholar
[9] Coates, J. and Sujatha, R. Galois cohomology of elliptic curves. Tata Inst. Fund. Res. Lecture Notes (Narosa Publishing House, 2000).Google Scholar
[10] Cornut, C. Mazur's conjecture on higher Heegner points. Invent. Math. 148 (2002), 495523.CrossRefGoogle Scholar
[11] Cornut, C. and Vatsal, V. CM points and quarternion algebras. Doc. Math. 10 (2005), 263309.CrossRefGoogle Scholar
[12] Cornut, C. and Vatsal, V. Nontriviality of Rankin–Selberg L-functions and CM points. Proc. London Math. Soc. Durham Symposium (2004).Google Scholar
[13] Greenberg, R. Iwasawa theory for elliptic curves. Lecture Notes in Math. 1716 (Springer, New York, 1999), pp. 51144.CrossRefGoogle Scholar
[14] Greenberg, R. Introduction to Iwasawa theory for elliptic curves, IAS/Park City Math. Ser. 9 (Amer. Math Soc. Providence, 2001), pp. 407464.Google Scholar
[15] Gross, B. Kolyvagin's work on modular elliptic curves. L-functions and arithmetic. London Math. Soc. Lecture Series 153 (1989), 235256.Google Scholar
[16] Manin, Y. I. Cyclotomic fields and modular curves. Russian Math. Surveys 26 (6) (1971), 778.CrossRefGoogle Scholar
[17] Mazur, B. Rational points of abelian varieties with values in towers of number fields. Invent. Math 18 (1972), 183266.CrossRefGoogle Scholar
[18] Milne, J. S. Arithmetic Duality Theorems, second ed. (BookSurge, LLC, Charleston, SC, 2006).Google Scholar
[19] Neukirch, J., Schmidt, A. and Wingberg, K. Cohomology of Number Fields, second edition, Grundlehren der Mathematischen Wissenschaften 323 (Springer, 2008), xvi+825.CrossRefGoogle Scholar
[20] Perrin-Riou, B. Fonctions L p-adiques, théorie d'Iwasawa et points de Heegner. Bull. Soc. Math. France 115 (1987), 399456.CrossRefGoogle Scholar
[21] Serre, J.-P. Propriétés galoisiennes des points dordre fini des courbes elliptiques. Invent. Math. 15 (1972), no. 4, 259331.Google Scholar
[22] Silverman, J. The Arithmetic of Elliptic Curves. Grad. Texts in Math. 106 (Springer-Verlag, 1986).CrossRefGoogle Scholar
[23] Vatsal, V. Special values of anticyclotomic L-functions. Duke Math. J. 116 (2003), 219261.CrossRefGoogle Scholar
[24] Wiles, A. Modular elliptic curves and Fermat's last theorem. Ann. of Math. 141 (2) (1995), 443551.CrossRefGoogle Scholar