Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T07:43:36.198Z Has data issue: false hasContentIssue false

Self-maps of BU

Published online by Cambridge University Press:  24 October 2008

Francis Clarke
Affiliation:
University College, Swansea

Extract

One of the results proved by Lance in (7) is the following.

Theorem 1. Let ø: BU(p) → BU(sp) be an H-map, where BU(p) denotes the localization of BU with respect to an odd prime p. Let ø*: π2k(BU(p))→ π2k(BU(p)) ≅ (p)) be multiplication by λk then

if n1 ≡ n2 mod(p − 1).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Adams, J. F.Vector fields on spheres. Ann. of Math. (2) 75 (1962), 603632.CrossRefGoogle Scholar
(2)Adams, J. F.On the groups J(X)-II. Topology 3 (1965), 137171.CrossRefGoogle Scholar
(3)Adams, J. F., Harris, A. S. and Switzer, R. M.Hopf algebras of co-operations for real and complex. K-theory. Proc. London Math. Soc. 23 (1971), 385408.CrossRefGoogle Scholar
(4)Atiyah, M. F.K-theory (Benjamin, New York, 1967).Google Scholar
(5)Berge, C.Principles of Combinatorics (Academic Press, New York, 1971).Google Scholar
(6)Kummer, E. E.Über eine allgemeine Eigenschaft der rationalen Entwicklungscoefficienten einer bestimmten Gattung analytischer Functionen. J. reine angew. Math. (Crelle) 41 (1851), 368372; Collected Papers, vol I, ed. A. Weil, (Springer-Verlag, Berlin Heidelberg New York, 1975, 358–362).Google Scholar
(7)Lance, T.Local H-maps of classifying spaces. Trans. Amer. Math. Soc. 254 (1979), 195215.Google Scholar
(8)Riordan, J.Combinatorial Identities (Wiley, New York, 1968).Google Scholar