No CrossRef data available.
The Schwartz property and nuclearity of spaces of smooth and holomorphic functions in infinite dimensions
Published online by Cambridge University Press: 24 October 2008
Extract
In [8] it was shown that a locally convex space E is a Schwartz space if and only if the convergence algebras Hc(U) and He(U) of holomorphic functions on an open subset of E coincide, i.e. if and only if continuous convergence c (see [1]) and the associated equable convergence structure e (= local uniform convergence, see [2, 13]) coincide.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 107 , Issue 2 , March 1990 , pp. 377 - 385
- Copyright
- Copyright © Cambridge Philosophical Society 1990
References
REFERENCES
[1]Binz, E.. Continuous Convergence on C(X). Lecture Notes in Math. vol. 469 (Springer-Verlag, 1975).CrossRefGoogle Scholar
[2]Bjon, S.. Eine ausgeglichene Limitierung auf Räumen n-linearer Abbildungen zwischen Limesvektorräumen. Soc. Sci. Fenn. Comment. Phys.-Math. 43 (1973), 189–201.Google Scholar
[3]Bjon, S.. Einbettbarkeit in den Bidualraum und Darstellbarkeit als projektiver Limes in Kategorien von Limesvektorräumen. Math. Nachr. 97 (1979), 103–116.CrossRefGoogle Scholar
[4]Bjon, S.. On nuclear limit vector spaces. In Categorical Aspects of Topology and Analysis, Lecture Notes in Math. vol. 915 (Springer-Verlag, 1982). pp. 27–39.CrossRefGoogle Scholar
[5]Bjon, S.. Differentiation under the integral sign and holomorphy. Math. Scand. 60 (1987), 77–95.CrossRefGoogle Scholar
[6]Bjon, S.. The approximation property for nuclear convergence vector spaces. Math. Nachr. 142 (1989), 267–275.CrossRefGoogle Scholar
[7]Bjon, S. and Lindström, M.. A general approach to infinite-dimensional holomorphy. Monatsh. Math. 101 (1986), 11–26.CrossRefGoogle Scholar
[8]Bjon, S. and Lindström, M.. Characterization of Schwartz-spaces by their holomorphic duals. Proc. Amer. Math. Soc. 102 (1988), 909–913.CrossRefGoogle Scholar
[9]Boland, P. J.. An example of a nuclear space in infinite dimensional holomorphy. Arkiv för Math. 15 (1975), 87–91.(1975).CrossRefGoogle Scholar
[10]Colombeau, J. F.. Differential Calculus and Holomorphy. North-Holland Math. Studies no. 64 (North-Holland, 1982).Google Scholar
[11]Dineen, S.. Complex Analysis in Locally Convex Spaces. North-Holland Math. Studies no. 57 (North-Holland, 1981).Google Scholar
[13]Frölicher, A. and Bucher, W.. Calculus in vector spaces without norm. Lecture Notes in Math, vol. 30 (Springer-Verlag, 1971).Google Scholar
[15]Hogbe-Nlend, H.. Bornologies and Functional Analysis. North-Holland Math. Studies no. 26 (North-Holland, 1977).Google Scholar
[17]Jarchow, H.. Duale Charakterisierung der Schwartz–Räume. Math. Ann. 196 (1972), 85–90.CrossRefGoogle Scholar
[18]Lindström, M.. On Schwartz convergence vector spaces. Math. Nachr. 117 (1984), 37–49.CrossRefGoogle Scholar
[19]Meise, R.. Spaces of differentiable functions and the approximation property. In Approximation Theory and Functional Analysis, Notas de Matemática no. 66 (North-Holland, 1979).Google Scholar
[20]Pietsch, A.. Nuclear Locally Convex Spaces. Ergeb. Math. Grenzgeb. vol. 66 (Springer-Verlag, 1972).Google Scholar
[21]Swart, J.. Zur Theorie der Schwartz-Räume. Math. Ann. 211 (1974), 261–276.CrossRefGoogle Scholar