Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T06:59:38.670Z Has data issue: false hasContentIssue false

Riemann surfaces of field extensions

Published online by Cambridge University Press:  24 October 2008

J. T. Knight
Affiliation:
United College, Chinese University of Hong Kong†

Extract

Since Riemann's dissertation of 1851, Riemann surfaces have for the most part been considered as suitable domains of definition for analytic functions. Here, however, we view them as topological spaces associated with certain kinds of field extension, and consider how their topological properties are connected with algebraic properties of these field extensions. A specialization of these results gives us arithmetic properties of fields of algebraic functions of one real variable.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Bourbaki, N.Éléments de mathématique, Algèbre commutative, Chap. 6, §9.Google Scholar
(2)Chevalley, C.Algebraic functions of one variable, p. 133 (American Mathematical Society, 1951).CrossRefGoogle Scholar
(3)Lang, S.Algebraic functions, p. 5. University of Columbia lecture notes (1965).Google Scholar
(4)Zariski, O. and Samuel, P.Commutative algebra, vol. II, p. 110 (Van Nostrand, 1960).CrossRefGoogle Scholar
(5)Serre, J.-P.Corps locaux, p. 172 (Hermann, 1962).Google Scholar
(6)Bourbaki, N.Corps locaux, § 8, p. 152 (Hermann, 1962).Google Scholar
(7)Chevalley, C.Algebraic functions of one variable, p. 134 (American Mathematical Society, 1951).CrossRefGoogle Scholar
(8)Chevalley, C.Algebraic functions of one variable, p. 139 (American Mathematical Society, 1951).CrossRefGoogle Scholar
(9)Artin, E.Theory of algebraic numbers, p. 91. Göttingen lecture notes (1959).Google Scholar
(10)Geyer, W.-D.Algebraischer Beweis des Satzes von Weichold. Math. Forschungsinstitut Oberwolfach, Ber. 2 (1964), pp. 83–98.Google Scholar
(11)Hilbert, D.Über ternäre definite Formen. Acta Math. 17 (1893), 169197.CrossRefGoogle Scholar
(12)Witt, E.Zerlegung reeller algebraischer Functionen in Quadrate. J. Reine Angew. Math. 171 (1934), 411.CrossRefGoogle Scholar
(13)Hasse, H.Beweis eines Satzes und Widerlegung einer Vermutung über das allgemeine Normenrestsymbol. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1931), 6469.Google Scholar
(14)Lang, S.On quasi algebraic closure. Ann. Math. 55 (1952), 373390.CrossRefGoogle Scholar