Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T00:08:22.487Z Has data issue: false hasContentIssue false

The Remez inequality for linear combinations of shifted Gaussians

Published online by Cambridge University Press:  01 May 2009

TAMÁS ERDÉLYI*
Affiliation:
Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368, U.S.A. e-mail: [email protected]

Abstract

Let andWe prove that there is an absolute constant c1 > 0 such thatfor every s ∈ (0, ∞) and n ≥ 9, where the supremum is taken for all fGn withThis is what we call (an essentially sharp) Remez-type inequality for the class Gn. We also prove the right higher dimensional analog of the above result.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Borwein, P. B. and Erdélyi, T.Upper bounds for the derivative of exponential sums. Proc. Amer. Math. Soc. 123 (1995), 14811486.Google Scholar
[2]Borwein, P. B. and Erdélyi, T.Polynomials and Polynomial Inequalities (Springer-Verlag: New York, 1995).Google Scholar
[3]Borwein, P. B. and Erdélyi, T.Müntz spaces and Remez inequalities. Bull. Amer. Math. Soc. 32 (1995), 3842.CrossRefGoogle Scholar
[4]Borwein, P. B. and Erdélyi, T.A sharp Bernstein-type inequality for exponential sums. J. Reine Angew. Math. 476 (1996), 127141.Google Scholar
[5]Borwein, P. B. and Erdélyi, T.Generalizations of Müntz's theorem via a Remez-type inequality for Müntz spaces. J. Amer. Math. Soc. 10 (1997), 327349.Google Scholar
[6]Borwein, P. B. and Erdélyi, T.Pointwise Remez- and Nikolskii-type inequalities for exponential sums. Math. Ann. 316 (2000), 3960.CrossRefGoogle Scholar
[7]Braess, D.Nonlinear Approximation Theory (Springer-Verlag, 1986).Google Scholar
[8]De Vore, R. A. and Lorentz, G. G.Constructive Approximation (Springer-Verlag, 1993).CrossRefGoogle Scholar
[9]Erdélyi, T.The Remez Inequality on the Size of Polynomials. Approximation Theory VI, Chui, C. K., Schumaker, L. L. and Wards, J. D. (eds.) (Academic Press, 1989), pp. 243246.Google Scholar
[10]Erdélyi, T.Remez-type inequalities on the size of generalized polynomials. J. London Math. Soc. 45 (1992), 255264.CrossRefGoogle Scholar
[11]Erdélyi, T.Remez-type inequalities and their applications. J. Comput. Appl. Math. 47 (1993), 167210.CrossRefGoogle Scholar
[12]Erdélyi, T.Bernstein-type inequalities for linear combinations of shifted Gaussians. Bull. London Math. Soc. 38 (2006), 124138.Google Scholar
[13]Erdélyi, T. and Nevai, P.Lower bounds for the derivatives of polynomials and Remez-type inequalities. Trans. Amer. Math. Soc. 349 (1997), 49534972.CrossRefGoogle Scholar
[14]Freud, G.Orthogonal Polynomials (Pergamon Press, 1971).Google Scholar
[15]Lorentz, G. G.Approximation of Functions, 2nd ed. (Chelsea, 1986).Google Scholar
[16]Lorentz, G. G., von Golitschek, M. and Makovoz, Y.Constructive Approximation: Advanced Problems (Springer-Verlag, 1996).CrossRefGoogle Scholar
[17]Remez, E. J.Sur une propriété des polynômes de Tchebyscheff. Comm. Inst. Sci. Kharkow 13 (1936), 9395.Google Scholar