Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T14:17:35.671Z Has data issue: false hasContentIssue false

Phase-integral treatment of wave reflexion by real potentials

Published online by Cambridge University Press:  24 October 2008

Bengt Lundborg
Affiliation:
University of Uppsala, Sweden

Abstract

Approximate analytical expressions for the wave reflexion amplitude for transmission above one-dimensional real smooth and slowly varying potentials in the absence of classical turning points are obtained in two different ways by means of the phase-integral method developed by N. Fröman and P. O. Fröman. The wave reflexion is shown to be governed by the complex transition points for the problem. The great accuracy of the formulae obtained, as well as their respective ranges of applicability, is illustrated by applying them, up to the eleventh order phase-integral approximation, to an exactly solvable model, for which the potential represents a monotonic step.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Berry, M. V. and Mount, K. E.Rep. Prog. Phya. 35, (1972), 315397.CrossRefGoogle Scholar
(2)Campbell, J. A.J. Comp. Phys. 10, (1972), 308315.CrossRefGoogle Scholar
(3)Campbell, J. A.Research Report, Newcastle, N.S.W. J. Phys. A. (to appear).Google Scholar
(4)Fröman, N.Ark. Fys. 32, (1966), 541548.Google Scholar
(5)Fröman, N.Ann. Phys. (N.Y.) 61, (1970), 451464.CrossRefGoogle Scholar
(6)Fröman, N. and Fröman, P. O.JWKB Approximation. Contributions to the Theory (North-Holland, Amsterdam, 1965). (Russian translation: MIR, Moscow, 1967.)Google Scholar
(7)Fröman, N. and Fröman, P. O.Nucl. Phys. A 147, (1970), 606626.CrossRefGoogle Scholar
(8)Fröman, N. and Fröman, P. O.Ann. Phys. (N.Y.) 83, (1974), 103107.CrossRefGoogle Scholar
(9)Fröman, N. and Fröman, P. O.Nuovo Cimento 20 B (1974), 121132.CrossRefGoogle Scholar
(10)Heading, J.An introduction to phase-integral methods (Methuen, London, 1962).Google Scholar
(11)Knoll, J. and Schaeffer, R.Ann. Phys. (N.Y.) 97, (1976), 307366.CrossRefGoogle Scholar
(12)Lundborg, B.Math. Proc. Cambridge Philos. Soc. 81, (1977), 463483.CrossRefGoogle Scholar
(13)Lundborg, B.UUITP, Report no. 16, Uppsala University, Institute of Theoretical Physics, December 1977.Google Scholar
(14)Meyer, R. E.Journ. Math. Phys. 17, (1976), 10391041.CrossRefGoogle Scholar
(15)Pokrovskii, V. L. and Khalatnikov, I. M.Sov. Phys. JETP 13, (1961), 12071210.Google Scholar
(16)Pokrovskii, V. L., Savvinykh, S. K. and Ulinich, F. R.Sov. Phys. JETP 34 (7), (1958), 879882.Google Scholar
(17)Pokrovskii, V. L., Ulinich, F. R. and Savvinykh, S. K.Sov. Phys. JETP 34 (7), (1958), 11191120.Google Scholar