No CrossRef data available.
Article contents
Periodic groups with permutable subgroup products
Published online by Cambridge University Press: 24 October 2008
Abstract
Let G be a group. If there exists an integer n > 1 such that for each n-tuple (H1, …, Hn) of subgroups of G there is a non-identity permutation σ of Σn such that the complexes H1,…Hn and Hσ(1)…Hσ(n) are equal, then G is said to have the property of permutable subgroup products, or to be a PSP group. We show that periodic groups with this property are locally finite and investigate the structure of such groups.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 106 , Issue 3 , November 1989 , pp. 431 - 437
- Copyright
- Copyright © Cambridge Philosophical Society 1989
References
REFERENCES
[1]Blyth, R. D.. Rewriting products of group elements. I. J. Algebra 116 (1988), 506–521.Google Scholar
[2]Blyth, R. D.. Rewriting products of group elements. II. J. Algebra 118 (1988), 246–259.CrossRefGoogle Scholar
[3]Blyth, R. D. and Robinson, D. J. S.. Recent progress on rewritability in groups. In Proceedings of the 1987 Singapore Group Theory Conference (Walter de Gruyter, 1989), pp. 77–85.Google Scholar
[4]Cooper, D. H.. Power automorphisms of a group. Math. Z. 107 (1968), 335–356.CrossRefGoogle Scholar
[5]Curzio, M., Longobardi, P. and Maj, M.. Su di un problema combinatorio in teoria dei gruppi. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 74 (1983), 136–142.Google Scholar
[6]Curzio, M., Longobardi, P., Maj, M. and Robinson, D. J. S.. A permutational property of groups. Arch. Math. (Basel) 44 (1985), 385–389.CrossRefGoogle Scholar
[7]Iwasawa, K.. Über die endlichen Gruppen und die Verbände ihrer Untergruppen. J. Univ. Tokyo 3 (1941), 171–199.Google Scholar
[8]Iwasawa, K.. On the structure of infinite M-groups. Japan. J. Math. 18 (1943), 709–728.CrossRefGoogle Scholar
[10]Rhbmtulla, A. H. and Weiss, A. R.. Groups with permutable subgroup products. In Proceedings of the 1987 Singapore Group Theory Conference (Walter de Gruyter, 1989), pp. 485–495.Google Scholar
[11]Robinson, D. J. S.. Finiteness conditions and generalized soluble groups, vol. 1 (Springer-Verlag, 1972).Google Scholar