Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T18:22:12.739Z Has data issue: false hasContentIssue false

A pencil of specialized canonical curves

Published online by Cambridge University Press:  24 October 2008

W. L. Edge
Affiliation:
University of Edinburgh

Extract

1. The present paper continues the investigation begun in (5). This earlier paper concluded with the description of a pencil P of canonical curves of genus 6 on a del Pezzo quintic surface F, but had first to describe the relevant features of the mapping of prime sections of F on a plane p by cubic curves circumscribing a quadrangle in p. It remains now to consider F and P in their ambient [5] in relation to G, the group, isomorphic to the symmetric group of degree 5, of self-projectivities of F.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Baker, H. F.Segre's ten-nodal primal in space of four dimensions and del Pezzo's surface in five dimensions. Journal London Math. Soc. 6 (1931), 176185.CrossRefGoogle Scholar
(2)Bath, F.On the quintic surface in space of five dimensions. Proc. Cambridge Philos. Soc. 24 (1928), 4855, 191209.CrossRefGoogle Scholar
(3)Burnside, W.Theory of groups of finite order (Cambridge University Press, 1911).Google Scholar
(4)Coxeter, H. S. M. and Moser, W. O. J.Generators and relations for discrete groups, 4th ed. (Springer, Berlin, Heidelberg, New York, 1980).CrossRefGoogle Scholar
(5)Edge, W. L.A pencil of four-nodal plane sextics. Math. Proc. Cambridge Philos. Soc. 89 (1981), 413421.CrossRefGoogle Scholar
(6)Frobenius, G. Über Gruppencharactere. Sitzungsberichte der königlich preussischen Akademie der Wissenschaften zu Berlin (1896).Google Scholar
(7)Segre, C.Introduzione alia geometria sopra un ente algebrico semplicemente infinite. Annali di matematica (2), 22 (1894), 41142; Opere, vol. I (Edizioni Cremonese, Rome, 1957), pp. 198304.CrossRefGoogle Scholar
(8)Semple, J. G. and Roth, L.Introduction to algebraic geometry (Clarendon Press, Oxford, 1949).Google Scholar
(9)Wiman, A.Zur Theorie der endlichen Gruppen von birationalen Transformationen in der Ebene. Math. Annalen 48 (1897), 195240.CrossRefGoogle Scholar
(10)Zeuthen, H. G.Lehrbuch der abzahlenden Methoden der Geometric (Teubner, Leipzig, Berlin, 1914).Google Scholar