Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T12:31:28.509Z Has data issue: false hasContentIssue false

Parametric surfaces

II. Tangential properties

Published online by Cambridge University Press:  24 October 2008

E. R. Reifenberg
Affiliation:
Trinity CollegeCambridge

Extract

1. In this paper I investigate the tangential properties of parametric surfaces, leading to the main result that the Lebesgue area is the Hausdorff two-dimensional measure of the set of points of the surface where an approximate tangential plane exists.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Besicovitch, A. S.On the fundamental geometrical properties of linearly measurable plane sets of points. II. Math. Ann. 115 (1938), 296329.CrossRefGoogle Scholar
(2)Besicovitch, A. S.A general form of the covering principle and the relative differentiation of additive functions. I. Proc. Camb. phil. Soc. 41 (1945), 103–10.CrossRefGoogle Scholar
(3)Besicovitch, A. S.On the definition and value of the area of a surface. Quart. J. Math. 16 (1945), 86102.CrossRefGoogle Scholar
(4)Cesari, L.Una ugualianza fondamentale per l'area delle superficie. Mem. R. Accad. Ital. 14 (1944), 891951. (See also p. 1379 of: Sui fondamenti geometrici dell' integrate classico per l'area delle superficie in forma parametrica. Mem. R. Accad. Ital. 13 (1943), 1323–481.)Google Scholar
(5)Reifenberg, E. R.Parametric surfaces. I. Area. Proc. Camb. phil. Soc. 47 (1951), 687–98.CrossRefGoogle Scholar