Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T19:29:54.706Z Has data issue: false hasContentIssue false

The order boundedness of band preserving operators on uniformly complete vector lattices

Published online by Cambridge University Press:  24 October 2008

P. T. N. McPolin
Affiliation:
The Queen's University of Belfast, BT7 1NN
A. W. Wickstead
Affiliation:
The Queen's University of Belfast, BT7 1NN

Extract

1. Introduction. A linear operator T on a vector lattice is band preserving if xy implies Txy. Much is known about the order bounded band preserving operators on an Archimedean vector lattice. The collection of all of these forms an Abelian algebra under composition and a vector lattice for the operator order (see [7], [8] and [13] amongst others). Very little appears to be known about band preserving operators which are not order bounded apart from some isolated examples ([11], [13], [1] and [17]) and some non-existence results ([11] and [1]).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Abramovic, J. A., Veksler, A. I. and Koldunov, A. V.. On operators preserving disjointness. Soviet Math. Dokl. 20 (1979), 10891093.Google Scholar
[2]Abramovic, J. A.. Multiplicative representation of the operators preserving disjointness. Indag. Math. 45 (1983).Google Scholar
[3]Aliprantis, C. D. and Burkinshaw, O.. Locally solid Riesz spaces (Academic Press, 1978).Google Scholar
[4]Arendt, W.. Spectral properties of Lamperti operators. Indiana Univ. Math. J. 32 (1983), 199215.CrossRefGoogle Scholar
[5]Bernau, S. J.. Lateral and Dedekind completion of Archimedean lattice groups. J. London Math. Soc. 12 (1976), 320322.CrossRefGoogle Scholar
[6]Bernau, S. J.. Orthomorphisms of archimedean vector lattices. Math. Proc. Cambridge Philos. Soc. 89 (1981), 119128.CrossRefGoogle Scholar
[7]Bigard, A. and Keimel, K.. Sur les endomorphismes conservant les polaires d'un groupe réticulé Archimédien. Bull. Soc. Math. France 97 (1969), 381398.CrossRefGoogle Scholar
[8]Conrad, P. F. and Diem, J. E.. The ring of polar preserving endomorphisms of an abelian lattice ordered group. Illinois J. Math. 15 (1971), 224240.CrossRefGoogle Scholar
[9]Dixmier, J.. Sur certains espaces considérés par M. H. Stone. Summa Bras. Math. 2 (1951), 151182.Google Scholar
[10]Fremlin, D. G.. Inextensible Riesz spaces. Math. Proc. Cambridge Philos. Soc. 77 (1975), 7190.CrossRefGoogle Scholar
[11]Luxemburg, W. A. J.. Some Aspects of the Theory of Riesz Spaces (Univ. Arkansas Lecture Notes in Maths., 4, 1979).Google Scholar
[12]Luxemburg, W. A. J. and Zaanen, A. C.. Riesz Spaces I (North-Holland 1971).Google Scholar
[13]Meyer, M.. Quelques propriétés des homomorphismes d'espaces vectoriels réticulés. Equipe d'Analyse, E.R.A. 294 (Université de Paris VI, Paris, 1979).Google Scholar
[14]Pagter, B. De. A note on disjointness preserving operators. Proc. Amer. Math. Soc. 90 (1984), 543549.CrossRefGoogle Scholar
[15]Semadeni, Z.. Banach Spaces of Continuous Functions (Polish Scientific Publishers, 1971).Google Scholar
[16]Veksler, A. I. and Geiler, V. A.. Order and disjoint completeness of linear partially ordered spaces. Siberian Math. J. 13 (1972), 3035.CrossRefGoogle Scholar
[17]Wickstead, A. W.. Extensions of orthomorphisms. J. Austral. Math. Soc. 29 (1980), 8798.CrossRefGoogle Scholar