Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T19:08:41.519Z Has data issue: false hasContentIssue false

On the polar varieties of ruled hypersurfaces

Published online by Cambridge University Press:  09 November 2016

M.E. HERNANDES
Affiliation:
Departamento de Matemática, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá-PR 87020-900, Brazil. e-mails: [email protected]; [email protected]; [email protected]
R. MARTINS
Affiliation:
Departamento de Matemática, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá-PR 87020-900, Brazil. e-mails: [email protected]; [email protected]; [email protected]
M.E. RODRIGUES HERNANDES
Affiliation:
Departamento de Matemática, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá-PR 87020-900, Brazil. e-mails: [email protected]; [email protected]; [email protected]

Abstract

The aim of this work is to characterise the k-polar variety Pk(X) of an (n − 1)-ruled hypersurface X ⊂ ℂn+1. More precisely, we prove that Pk(X) is empty for all k >1 and the first polar variety is empty or it is an (n − 2)-ruled variety in ℂn+1, whose multiplicity is obtained by the multiplicity of the base curve and the multiplicity of one directrix of X. As a consequence we obtain the Euler obstruction Eu0(X) of X and, in addition, we exhibit (n − 1)-ruled hypersurfaces such that Eu0(X) = m, for any prescribed positive integer m.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Barbosa, G. F., Martins, R. and Saia, M. J. Topology of simple singularities of ruled surfaces in ℝ p . Topology Appl. 159 (2) (2012), 397404.Google Scholar
[2] Bedregal, R. C., Saia, M. J. and Tomazella, J. N. Euler obstruction and polar multiplicities of images of finite morphisms on ICIS. Proc. Amer. Math. Soc. 140 (3) (2012), 855863.Google Scholar
[3] Brasselet, J.-P. and Grulha, N. G. Jr. Local Euler obstruction, old and new II. Lecture Notes Series - Real and Complex Singularities 380 (Cambridge University Press 2010), 2345.CrossRefGoogle Scholar
[4] Grulha, N. G. Jr., Hernandes, M. E. and Martins, R. Polar multiplicities and Euler obstruction for ruled surfaces. Bull. Brazilian Math. Soc. 43 (3) (2012), 443451.Google Scholar
[5] Houston, K. and Kirk, N. On the classification and geometry of corank 1 map-germs from three-space to four-space. London Math. Soc. Lecture Note Series 263 (1999), 325351.Google Scholar
[6] Izumiya, S. and Takeuchi, N. Singularities of ruled surfaces in ℝ3 . Math. Proc. Camb. Phil. Soc. 130 (2001), 111.CrossRefGoogle Scholar
[7] MacPherson, R. D. Chern classes for singular algebraic varieties. Ann. of Math. 100 (2) (1974), 423432.Google Scholar
[8] Marar, W. L. and Mond, D. Multiple point schemes for corank 1 maps. J. London Math. Soc. 39 (2) (1989), 553567.Google Scholar
[9] Martins, R. and Nuño-Ballesteros, J. J. Finitely determined singularities of ruled surfaces in ℝ3 . Math. Proc. Camb. Phil. Soc. 147 (3) (2009), 701733.Google Scholar
[10] Morin, B. Formes canoniques des singularités d'une application différentiable. C. R. Acad. Sci. 260 (1965), 5662–5665 and 65036506.Google Scholar
[11] Pérez, V. H. J. and Saia, M. J. Euler obstruction, polar multiplicities and equisingularity of map germs in $\Ncal{O}$ (n, p), n < p . Int. J. Math. 17 (8) (2006), 887903.CrossRefGoogle Scholar
[12] Saji, K. Singularities of non-degenerate n-ruled (n + 1)-manifolds in euclidean space. Geometric Singularity Theory 65 (Banach Center Publications 2004), 211225.Google Scholar
[13] Schwartz, M. H. Classes caractéristiques défines par une stratification d'une variété analytique complexe. C. R. Acad. Sci. 260 (1965), 3261–3264 and 35353537.Google Scholar
[14] Teissier, B. Variétés polaires II: Multiplicités polaires, sections planes et conditions de Whitney. Lecture Notes in Math. 961 (Springer 1982).Google Scholar
[15] Teissier, B. and Tráng, L. D. Variétés polaires locales et classes de Chern des variétés singulières. Ann. of Math. 114 (1981), 457491.Google Scholar
[16] Wall, C. T. C. Finite determinacy of smooth map-germs. Bull. London Math. Soc. 6 (13) (1981), 481539.CrossRefGoogle Scholar