Article contents
On Tasoev's continued fractions
Published online by Cambridge University Press: 12 March 2003
Abstract
Let $a$ be a positive integer with $a > 1$. We show \[ [0;a,a^2,a^3,a^4,\ldots]=\frac{\sum\nolimits^{\infty}_{s=0}a^{-(s+1)^2}\prod\nolimits^s_{i=1}(a^{2i}-1)^{-1}}{\sum\nolimits^{\infty}_{s=0}a^{-s^2}\prod\nolimits^s_{i=1}(a^{2i}-1)^{-1}} \] and \[ [0;a,a,a^2,a^2,a^3,a^3,\ldots]=\frac{\sum\nolimits^{\infty}_{s=0}a^{-\frac{(s+1)(s+2)}{2}}\prod\nolimits^s_{i=1}(a^{i}-1)^{-1}}{\sum\nolimits^{\infty}_{s=0}a^{-\frac{s(s+1)}{2}}\prod\nolimits^s_{i=1}(a^{i}-1)^{-1}} \] A more general case is discussed.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 134 , Issue 1 , January 2003 , pp. 1 - 12
- Copyright
- 2003 Cambridge Philosophical Society
- 8
- Cited by