Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T18:21:52.277Z Has data issue: false hasContentIssue false

On satellite knots

Published online by Cambridge University Press:  24 October 2008

Masaharu Kouno
Affiliation:
Kobe University, Kobe 657, Japan
Kimihiko Motegi
Affiliation:
Nihon University, Tokyo 156, Japan

Extract

Throughout this paper we work in the smooth category and assume that all knots are oriented and consider two knots K1 and K2 to be equivalent if and only if there is an orientation preserving homeomorphism h:S3S3 which carries K1 onto K2 so that their orientations match. We write K1K2 if K1 and K2 are equivalent and – K denotes the knot obtained from K by inverting its orientation.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cerf, J.. Sur les difféomorphismes de la sphère de dimension trois (Г4 = 0). Lectures Notes in Math. 53 (Springer-Verlag, 1968).Google Scholar
[2]Hatcher, A.. A proof of the Smale Conjecture. Diff(S 3) ≃ O(4). Ann. of Math. 117 (1983), 553607.CrossRefGoogle Scholar
[3]Hempel, J.. 3-manifolds. Ann. of Math. Studies 86 (Princeton Univ. Press, 1976).Google Scholar
[4]Jaco, W.. Lectures on three manifold topology. Conference board of Math. Science, Regional Conference Series in Math. 43 (Amer. Math. Soc., 1980).CrossRefGoogle Scholar
[5]Jaco, W. and Shalen, P.. Seifert fibered spaces in 3-manifolds. Mem. Amer. Math. Soc. 220 (1979).Google Scholar
[6]Johannson, K.. Homotopy equivalences of 3-manifolds with boundaries. Lectures Notes in Math. 761 (Springer-Verlag, 1979).CrossRefGoogle Scholar
[7]Kouno, M.. On knots with companions. Kobe J. Math. 2 (1985), 143148.Google Scholar
[8]Morgan, J. and Bass, H.. The Smith conjecture (Academic Press, 1984).Google Scholar
[9]Schubert, H.. Die eindeutige Zerlegbarkeit eines Knoten in Primknoten. Sitzungsber. Akad. Wiss. Heidelberg, math. nat. KI. 1949, 3. Abh., 57–104.Google Scholar
[10]Schubert, H.. Knoten und Vollringe. Acta Math. 90 (1953), 131286.CrossRefGoogle Scholar
[11]Soma, T.. On preimage knots in S 3. Proc. Amer. Math. Soc. 100 (1987), 589592.Google Scholar
[12]Trotter, H. F.. Non-invertible knots exist. Topology 2 (1964), 275280.CrossRefGoogle Scholar