Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Chan, Heng Huat
and
Ong, Yao
1999.
On Eisenstein series and ∑_{𝑚,𝑛=-∞}^{∞}𝑞^{𝑚²+𝑚𝑛+2𝑛²}.
Proceedings of the American Mathematical Society,
Vol. 127,
Issue. 6,
p.
1735.
Liu, Zhi-Guo
2000.
Some Eisenstein Series Identities.
Journal of Number Theory,
Vol. 85,
Issue. 2,
p.
231.
Chan, Heng Huat
and
Liaw, Wen-Chin
2000.
Cubic modular equations and new Ramanujan-type series for 1∕π.
Pacific Journal of Mathematics,
Vol. 192,
Issue. 2,
p.
219.
Berndt, Bruce C.
2001.
Special Functions 2000: Current Perspective and Future Directions.
p.
61.
Berndt, Bruce C.
Chan, Heng Huat
Kang, Soon-Yi
and
Zhang, Liang-Cheng
2002.
A certain quotient of eta-functions found in Ramanujan’s lost notebook.
Pacific Journal of Mathematics,
Vol. 202,
Issue. 2,
p.
267.
Chan, Heng Huat
Tan, Victor
and
Gee, Alice
2003.
Cubic singular moduli, Ramanujan’s class invariants λnand the explicit Shimura Reciprocity Law.
Pacific Journal of Mathematics,
Vol. 208,
Issue. 1,
p.
23.
Chan, Heng Huat
Chan, Song Heng
and
Liu, Zhiguo
2004.
Domb's numbers and Ramanujan–Sato type series for 1/π.
Advances in Mathematics,
Vol. 186,
Issue. 2,
p.
396.
Cooper, Shaun
and
Toh, Pee Choon
2008.
Determinant identities for theta functions.
Journal of Mathematical Analysis and Applications,
Vol. 347,
Issue. 1,
p.
1.
Braden, Harry W
and
Ènol'skii, Viktor Z
2010.
SU(2)-monopoles, curves with symmetries and Ramanujan's heritage.
Sbornik: Mathematics,
Vol. 201,
Issue. 6,
p.
801.
Браден, Гарри Уайтинг
Braden, Harry Whiting
Энольский, Виктор Зеликович
and
Enol'skii, Viktor Zelikovich
2010.
$\operatorname{SU}(2)$-монополи, кривые с симметриями и наследие Рамануджана.
Математический сборник,
Vol. 201,
Issue. 6,
p.
19.
Xia, Ernest X. W.
Yao, Olivia X. M.
and
Hartung, Ferenc
2012.
Eisenstein Series Identities Involving the Borweins′ Cubic Theta Functions.
Journal of Applied Mathematics,
Vol. 2012,
Issue. 1,
Joyce, G S
2012.
Application of Mahler measure theory to the face-centred cubic lattice Green function at the origin and its associated logarithmic integral.
Journal of Physics A: Mathematical and Theoretical,
Vol. 45,
Issue. 28,
p.
285001.
Saikia, Nipen
2012.
Explicit Evaluations of Cubic and Quartic Theta-Functions.
ISRN Discrete Mathematics,
Vol. 2012,
Issue. ,
p.
1.
Hu, Xiaowen
2015.
Localized Standard Versus Reduced Formula and Genus 1 Local Gromov–Witten Invariants.
International Mathematics Research Notices,
Vol. 2015,
Issue. 20,
p.
9921.
Chan, Heng Huat
2015.
Analogues of the Brent–Salamin algorithm for evaluating $$\pi $$ π.
The Ramanujan Journal,
Vol. 38,
Issue. 1,
p.
75.
Cooper, Shaun
Ge, Jinqi
and
Ye, Dongxi
2015.
Hypergeometric transformation formulas of degrees 3, 7, 11 and 23.
Journal of Mathematical Analysis and Applications,
Vol. 421,
Issue. 2,
p.
1358.
Joyce, G S
2018.
Analytic properties for the honeycomb lattice Green function at the origin.
Journal of Physics A: Mathematical and Theoretical,
Vol. 51,
Issue. 18,
p.
185002.
Shruthi
and
Kumar, B. R. Srivatsa
2020.
Some new Eisenstein series containing the Borweins’ cubic theta functions and convolution sum $$\displaystyle {\sum _{i+4j=n}^{}\sigma (i)\sigma (j)}$$.
Afrika Matematika,
Vol. 31,
Issue. 5-6,
p.
971.
Kumar, B. R. Srivatsa
Shruthi
Radha, D. Anu
and
Carpentieri, Bruno
2021.
Relation between Borweins’ Cubic Theta Functions and Ramanujan’s Eisenstein Series.
Journal of Applied Mathematics,
Vol. 2021,
Issue. ,
p.
1.
Otsubo, Noriyuki
2021.
A new approach to hypergeometric transformation formulas.
The Ramanujan Journal,
Vol. 55,
Issue. 2,
p.
793.