No CrossRef data available.
On multipliers of Fourier transforms
Published online by Cambridge University Press: 24 October 2008
Extract
In this paper G is a locally compact Abelian group, φ a complex-valued function defined on the dual Γ, Lp(G) (1 ≤ p ≤ ∞) the usual Lebesgue space of index p formed with respect to Haar measure, C(G) the set of all bounded continuous complex-valued functions on G, and C0(G) the set of all f ∈ C(G) which vanish at infinity.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 71 , Issue 1 , January 1972 , pp. 63 - 66
- Copyright
- Copyright © Cambridge Philosophical Society 1972
References
REFERENCES
(1)Doss, R.On the multiplicators of some classes of Fourier transforms. Proc. London Math. Soc. (2) 50 (1949), 169–195.Google Scholar
(2)Edwards, D. A.On translates of L ∞-functions. J. London Math. Soc. 36 (1961), 431–432.CrossRefGoogle Scholar
(3)Edwards, R. E.Fourier series, A modern introduction, vol. II. Holt, Rinehart and Winston (New York, 1967).Google Scholar
(5)Hewitt, E. and Ross, K. A.Abstract harmonic analysis, vol. I (Springer-Verlag; Heidelberg and New York, 1963).Google Scholar
(6)Hewitt, E. and Ross, K. A.Abstract harmonic analysis, vol. I (Springer-Verlag; Heidelberg and New York, 1970).Google Scholar
(7)Hormander, L.Estimates for translation invariant operators in L ν spaces. Acta Math. 104 (1960), 93–140.CrossRefGoogle Scholar
(10)Verblunsky, S.On some classes of Fourier series. Proc. London Math. Soc. (2) 33 (1932), 287–327.CrossRefGoogle Scholar
(11)Zygmund, A.Remarque sur un théorème de M. Fekete. Bull. Acad. Polonaise Sci. Lett. (1927), 343–347.Google Scholar