No CrossRef data available.
On groups with real valued length function
Published online by Cambridge University Press: 24 October 2008
Extract
Groups with length functions were introduced by Lyndon [5], and those with integer valued length were shown by Chiswell [2] to be equivalent to groups acting on trees, investigated by Serre[6]. Watatani[7] showed that for a group with integer valued length function the edges of the tree form an orthonormal set in a Hilbert space on which the group acts as a group of isometries.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 95 , Issue 2 , March 1984 , pp. 223 - 227
- Copyright
- Copyright © Cambridge Philosophical Society 1984
References
REFERENCES
[1]Akemann, C. A. and Walter, M.. Unbounded negative definite functions. Canad. J. Math. 23 (1981), 862–871.CrossRefGoogle Scholar
[2]Chiswell, I. M.. Abstract length functions in groups. Math. Proc. Cambridge Philos. Soc. 80 (1976), 451–463.CrossRefGoogle Scholar
[3]Delorme, P.. 1-Cohomologie des représentations unitaires. Bull Soc. Math. France 105 (1977), 281–336.CrossRefGoogle Scholar
[4]Imrich, W.. On metric properties of tree-like spaces. Beiträge zur Graphentheorie und deren Anwendungen, Oberhof (DDR) (ed. Sektion, Marök der Technischen Hochschule Ilmenau), pp. 129–156.Google Scholar
[5]Lyndon, R. C.. Length functions in groups. Math. Scand. 12 (1963), 209–234.CrossRefGoogle Scholar
[7]Watatani, Y.. Property T of Kazhdan implies property FA of Serre. Math. Japon. 27 (1982), 99–103.Google Scholar