Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T13:46:50.507Z Has data issue: false hasContentIssue false

On complex Stiefel manifolds

Published online by Cambridge University Press:  24 October 2008

J. F. Adams
Affiliation:
University of Manchester
G. Walker
Affiliation:
University of Manchester

Extract

We shall study the following complex Stiefel fibring:

.

In particular we shall study the problem: for what values of n and k does the fibring(1.1) admit a cross-section? A necessary condition for the existence of a cross-section has been found by Atiyah and Todd (8). We shall show (Theorem 1.1 below) that the condition of Atiyah and Todd is sufficient (as well as necessary) for the existence of a cross-section. The problem stated above is therefore completely solved.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1965

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Adams, J. F.On the groups J(X). I. Topology 2 (1963), 181195.CrossRefGoogle Scholar
(2)Adams, J. F.On the groups J(X). II. Topology (to appear).Google Scholar
(3)Adams, J. F.Vector fields on spheres. Ann. of Math. 75 (1962), 603632.CrossRefGoogle Scholar
(4)Adams, J. F. Applications of the Grothendieck–Atiyah–Hirzebruch functor K(X), from Colloquium on algebraic topology (mimeographed notes; Aarhus, 1962).Google Scholar
(5)Adams, J. F. Applications of the Grothendieck–Atiyah–Hirzebruch functor K(X), from Proceedings of the international congress of mathematicians (Stockholm, 1962).Google Scholar
(6)Atiyah, M. F.Thom complexes. Proc. London Math. Soc. (3) 11 (1961), 291310.CrossRefGoogle Scholar
(7)Atiyah, M. F. and Hirzebruch, F.Vector bundles and homogeneous spaces. Proceedings of Symposia in Pure Mathematics 3, Differential Geometry. Amer. Math. Soc. (1961), pp. 738.Google Scholar
(8)Atiyah, M. F. and Todd, J. A.On complex Stiefel manifolds. Proc. Cambridge Philos. Soc. 56 (1960), 342353.CrossRefGoogle Scholar
(9)Bott, R.The stable homotopy of the classical groups. Ann. of Math. 70 (1959), 313337.CrossRefGoogle Scholar
(10)Bott, R.Quelques remarques sur les théorèmes de périodicité. Bull. Soc. Math. France 87 (1959), 293310.Google Scholar
(11)Bott, R.A note on the KO-theory of sphere bundles. Bull. Amer. Math. Soc. 68 (1962), 395400.CrossRefGoogle Scholar
(12)Bott, R.Lectures on K(X) (mimeographed notes; Harvard, 1962).Google Scholar
(13)Hirzebruch, F.Neue topologische Methoden in der algebraischen Geometrie (Springer; Berlin, 1956).Google Scholar
(14)James, I. M.The intrinsic join: a study of the homotopy groups of Stiefel manifolds. Proc. London Math. Soc. (3) 8 (1958), 507535.CrossRefGoogle Scholar
(15)James, I. M.Cross-sections of Stiefel manifolds. Proc. London Math. Soc. (3) 8 (1958), 536547.CrossRefGoogle Scholar
(16)Sanderson, B. J.Immersions and embeddings of protective spaces. Proc. London Math. Soc. (3) 14 (1964), 137153.CrossRefGoogle Scholar
(17)Thom, R.Espaces fibrés en sphères et carrés de Steenrod. Ann. Sci. École Norm. Sup. 69 (1952), 109182.CrossRefGoogle Scholar