Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-02T15:58:47.894Z Has data issue: false hasContentIssue false

A note on pointwise convergence for the Schrödinger equation

Published online by Cambridge University Press:  06 November 2017

RENATO LUCÀ
Affiliation:
Departement Matematik und Informatik, Speigelgacse, Universität Basel, 4051, Switzerland. e-mail: [email protected]
KEITH M. ROGERS
Affiliation:
Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Calle Nicolás Cabrera 13-15, Madrid, 28049, Spain. e-mail: [email protected]

Abstract

We consider Carleson's problem regarding pointwise convergence for the Schrödinger equation. Bourgain proved that there is initial data, in Hs(ℝn) with $s<\frac{n}{2(n+1)}$, for which the solution diverges on a set of nonzero Lebesgue measure. We provide a different example enabling the generalisation to fractional Hausdorff measure.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Barceló, J. A., Bennett, J., Carbery, A. and Rogers, K. M. On the dimension of diverence sets of dispersive equations. Math. Ann. 349 (2011), 599622.Google Scholar
[2] Barceló, J. A., Bennett, J., Carbery, A., Ruiz, A. and Vilela, M. C. Some special solutions of the Schrödinger equation. Indiana Univ. Math. J. 56 (2007), 15811593.Google Scholar
[3] Bourgain, J. Some new estimates on oscillatory integrals. In Essays on Fourier Analysis in Honor of Elias M. Stein. Princeton Math. Ser. 42 (Princeton, NJ, 1991), 83112.Google Scholar
[4] Bourgain, J. A remark on Schrödinger operators. Israel J. Math. 77 (1992), 116.Google Scholar
[5] Bourgain, J. On the Schrödinger maximal function in higher dimension. Tr. Mat. Inst. Steklova 280 (2013), 5366.Google Scholar
[6] Bourgain, J. A note on the Schrödinger maximal function. J. Anal. Math. 130 (2016), 393396.Google Scholar
[7] Carbery, A. Radial Fourier multipliers and associated maximal functions. In Recent Progress in Fourier Analysis (El Escorial, 1983). North–Holland Math. Stud. 11 (North–Holland, Amsterdam), 4956.Google Scholar
[8] Carleson, L. Some analytic problems related to statistical mechanics. In Euclidean Harmonic Analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979). Lecture Notes in Math. 779 (Springer, Berlin), 545.Google Scholar
[9] Cowling, M. Pointwise behaviour of solutions to Schrödinger equations. In Harmonic Analysis (Cortona, 1982). Lecture Notes in Math. 992 (Springer, Berlin), 8390.Google Scholar
[10] Dahlberg, B. E. J. and Kenig, C. E. A note on the almost everywhere behavior of solutions to the Schrödinger equation. In Harmonic Analysis (Minneapolis, Minn., 1981). Lecture Notes in Math. 908 Springer, Berlin, 205209.Google Scholar
[11] Demeter, C. and Guo, S. Schrödinger maximal function estimates via the pseudoconformal transformation. arXiv:1608.07640, (2016).Google Scholar
[12] Du, X., Guth, L. and Li, X. A sharp Schrödinger maximal estimate in ℝ2. Ann. of Math. 186 (2017), 607640.Google Scholar
[13] Falconer, K. Classes of sets with large intersection. Mathematika 32 (1985), 191205.Google Scholar
[14] Falconer, K. Fractal Geometry : Mathematical Foundations and Applications (Wiley, 2003).Google Scholar
[15] Lee, S. On pointwise convergence of the solutions to the Schrödinger equations in ℝ2. Int. Math. Res. Not. (2006), 121.Google Scholar
[16] Lucà, R. and Rogers, K. M. Coherence on fractals versus pointwise convergence for the Schrödinger equation. Comm. Math. Phys. 351 (2017), 341359.Google Scholar
[17] Lucà, R. and Rogers, K. M. Average decay for the Fourier transform of measures with applications. arXiv:1503.00105 (2015), J. Eur. Math. Soc., to appear.Google Scholar
[18] Mattila, P. Fourier Analysis and Hausdorff Dimension. Cambridge Stud. Adv. Math. 150 (Cambridge University Press, Cambridge, 2015).Google Scholar
[19] Moyua, A., Vargas, A. and Vega, L. Schrödinger maximal function and restriction properties of the Fourier transform. Int. Math. Res. Not. 16 (1996), 793815.Google Scholar
[20] Moyua, A., Vargas, A. and Vega, L. Restriction theorems and maximal operators related to oscillatory integrals in ℝ3. Duke Math. J. 96 (1999), 547574.Google Scholar
[21] Nikišin, E. M. A resonance theorem and series in eigenfunctions of the Laplace operator. Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 795813.Google Scholar
[22] Sjögren, P. and Sjölin, P. Convergence properties for the time-dependent Schrödinger equation. Ann. Acad. Sci. Fenn. 14 (1989), 1325.Google Scholar
[23] Sjölin, P. Regularity of solutions to the Schrödinger equation. Duke Math. J. 55 (1987), 699715.Google Scholar
[24] Stein, E. M. On limits of sequences of operators. Ann. of Math. 74 (1961), 140170.Google Scholar
[25] Tao, T. A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal. 13 (2003), 13591384.Google Scholar
[26] Tao, T. and Vargas, A. A bilinear approach to cone multipliers II. Applications. Geom. Funct. Anal. 10 (2000), 185258.Google Scholar
[27] Vega, L. Schrödinger equations: pointwise convergence to the initial data. Proc. Amer. Math. Soc. 102 (1988), 874878.Google Scholar