No CrossRef data available.
Article contents
Normal bundles in flag bundles
Published online by Cambridge University Press: 24 October 2008
Abstract
Let i: Y ↪ X be an inclusion map of non-singular irreducible algebraic quasi-projective varieties defined over an algebraically closed field. Let E be an algebraic vector bundle over X and H be a sub-bundle of the induced bundle, i*E. If j:F(H) ↪ F(E) is the corresponding inclusion map of (incomplete) flag bundles, then we derive the normal bundle N(F(H), F(E)) in terms of the bundles H and E, the tangent bundles of Y and X as well as the tautological bundles over F(H).
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 90 , Issue 3 , November 1981 , pp. 395 - 402
- Copyright
- Copyright © Cambridge Philosophical Society 1981
References
REFERENCES
(2)Hirzebruch, F.Topological methods in algebraic geometry, 3rd ed. (Springer, Berlin, 1966).Google Scholar
(3)Lam, K. Y.A formula for the tangent bundle of flag manifolds and related manifolds. Trans. Amer. Math. Soc. 213 (1975), 305–314.CrossRefGoogle Scholar
(4)Lascu, A. T. and Scott, D. B.An algebraic correspondence with applications to projective bundles and blowing up Chern classes. Annali di Matematica Pura ed Applicata, (4) 102 (1975), 1–36.CrossRefGoogle Scholar
(5)Chevalley, Séminaire C.. Anneaux de Chow et applications (Secrétariat mathématique, 11 Rue Pierre Curie, Paris 5e, 1958).Google Scholar
(6)Porteous, I. R. Simple singularities of maps. Proc. Liverpool Singularities Symposium, vol. 1 (Springer Lecture Notes in Math., vol. 192).Google Scholar