Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T12:43:43.861Z Has data issue: false hasContentIssue false

Nice sets and invariant densities in complex dynamics

Published online by Cambridge University Press:  22 June 2010

NEIL DOBBS*
Affiliation:
Institutionen for Matematik, KTH, Lindstedtsvagen 25, 100 44 Stockholm, Sweden e-mail: [email protected]

Abstract

In complex dynamics, we construct a so-called nice set (one for which the first return map is Markov) around any point which is in the Julia set but not in the post-singular set, adapting a construction of Rivera–Letelier. This simplifies the study of absolutely continuous invariant measures. We prove a converse to a recent theorem of Kotus and Świątek, so for a certain class of meromorphic maps the absolutely continuous invariant measure is finite if and only if an integrability condition is satisfied.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Benedicks, M. and Misiurewicz, M.Absolutely continuous invariant measures for maps with flat tops. Inst. Hautes Études Sci. Publ. Math. 69 (1989), 203213.CrossRefGoogle Scholar
[2]Bock, H. Über das Iterationsverhalten meromorpher Funktionen auf der Juliamenge. PhD Thesis (Aachen, 1998).Google Scholar
[3]Bock, H.On the dynamics of entire functions on the Julia set. Res. Math. 30 (1-2) (1996), 1620.CrossRefGoogle Scholar
[4]Dobbs, N. On cusps and flat tops. (2007), http://arxiv.org/abs/0801.3815.Google Scholar
[5]Dobbs, N. and Skorulski, B.Non-existence of absolutely continuous invariant probabilities for exponential maps. Fund. Math. 198 (3) (2008), 283287.Google Scholar
[6]Grzegorczyk, P., Przytycki, F. and Szlenk, W.On iterations of Misiurewicz's rational maps on the Riemann sphere. Ann. Inst. H. Poincaré Phys. Théor. 53 (4) (1990), 431444. Hyperbolic behaviour of dynamical systems (Paris, 1990).Google Scholar
[7]Kotus, J. and Świątek, G.Invariant measures for meromorphic Misiurewicz maps. Math. Proc. Cam. Phil. Soc. 145 (3) (2008), 685697.Google Scholar
[8]Kotus, J. and Świątek, G.No finite invariant density for Misiurewicz exponential maps. C. R. Math. Acad. Sci. Paris 346 (9-10) (2008), 559562.Google Scholar
[9]Kotus, J. and Urbański, M.Existence of invariant measures for transcendental subexpanding functions. Math. Z. 243 (1) (2003), 2536.Google Scholar
[10]Lyubich, M. Yu.Typical behavior of trajectories of the rational mapping of a sphere. Dokl. Akad. Nauk SSSR 268 (1) (1983), 2932.Google Scholar
[11]Mauldin, R. D., Przytycki, F. and Urbański, M.Rigidity of conformal iterated function systems. Comp. Math. 129 (3) (2001), 273299.CrossRefGoogle Scholar
[12]Mauldin, R. D. and Urbański, M.Graph directed Markov systems, volume 148 of Cambridge Tracts in Mathematics. (Cambridge University Press, 2003). Geometry and dynamics of limit sets.CrossRefGoogle Scholar
[13]Przytycki, F. and Urbański, M.Rigidity of tame rational functions. Bull. Pol. Acad. Sci. Math 47 (1999), 163182.Google Scholar
[14]Przytycki, F. and Rivera–Letelier, J.Statistical properties of topological Collet-Eckmann maps. Ann. Sci. École Norm. Sup. (4) 40 (1) (2007), 135178.Google Scholar
[15]Rivera–Letelier, J.A connecting lemma for rational maps satisfying a no-growth condition. Ergodic Theory Dynam. Systems 27 (2) (2007), 595636.Google Scholar
[16]Tsuji, M.Potential Theory in Modern Function Theory (Maruzen Co. Ltd., 1959).Google Scholar