Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T08:38:11.698Z Has data issue: false hasContentIssue false

Morita cohomology

Published online by Cambridge University Press:  05 December 2014

JULIAN V. S. HOLSTEIN*
Affiliation:
Christ's College, Cambridge, CB2 3BU, United Kingdom. e-mail: [email protected]

Abstract

We consider two categorifications of the cohomology of a topological space X by taking coefficients in the category of differential graded categories. We consider both derived global sections of a constant presheaf and singular cohomology and find the resulting dg-categories are quasi-equivalent and moreover quasi-equivalent to representations in perfect complexes of chains on the loop space of X.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adams, J. F. and Hilton, P. J.On the chain algebra of a loop space, Comment. Math. Helv. 30 (1956), 305330.CrossRefGoogle Scholar
[2]Barwick, C. On (enriched) left Bousfield localisation of model categories. Arxiv e-prints (2007), 0708.2067.Google Scholar
[3]Berrick, A. J.A topologist's view of perfect and acyclic groups. In Invitations to Geometry and Topology. Bridson, M. and Salamon, S., eds. (Oxford University Press, 2002), ch. 1, pp. 128.Google Scholar
[4]Bondal, A. and Orlov, D. Derived categories of coherent sheaves. ArXiv e-prints (2002), math/0206295.Google Scholar
[5]Cisinski, D.-C.Locally constant functors Math. Proc. Camb. Phil. Soc. 147 (2009), 593.Google Scholar
[6]Cohen, R. L. and Jones, J. D. S.A homotopy theoretic realisation of string topology. Math. Ann. 324 (2002), 773798.Google Scholar
[7]Dimca, A., Papadima, S. and Suciu, A. I.Non-finiteness properties of fundamental groups of smooth projective varieties. J. Reine Angew. Math. 629 (2009), 89105.Google Scholar
[8]Dugger, D. A primer on homotopy colimits. Available at: math.uoregon.edu/ddugger/hocolim.pdf.Google Scholar
[9]Dugger, D., Hollander, S. and Isaksen, D.Hypercovers and simplicial presheaves. Math. Proc. Camb. Phil. Soc. 136 (2004), 951.Google Scholar
[10]Dugger, D. and Isaksen, D. C.Topological hypercovers and $\Bbb A$1-realisations. Math. Z. 246 (2004), 667689.Google Scholar
[11]Dwyer, W. G., Hirschhorn, P. S., Kan, D. M. and Smith, J. H., Homotopy Limit Functors on Model Categories and Homotopical Categories. Math. Surv. Monogr. vol. 113 (Amer. Math. Soc. 2004).Google Scholar
[12]Dwyer, W. G. and Kan, D. M.Function complexes for diagrams of simplicial sets. Nederl. Akad. Wetensch. Indag. Math. 45 (1983), 139147.Google Scholar
[13]Goerss, P. and Jardine, J.Simplicial Homotopy Theory. Prog. in Math. vol. 174 (Birkhauser Verlag GmbH, 1999).Google Scholar
[14]Hirschhorn, P. S.Model categories and their localisations. Math. Surv. Monogr. vol. 99 (American Mathematical Society, 2003).Google Scholar
[15]Hirschowitz, A. and Simpson, C. Descente pour les n-champs. Arxiv e-prints (2001), math/9807049.Google Scholar
[16]Holstein, J. V. S. Morita cohomology and homotopy locally constant sheaves. ArXiv e-prints (2014), 1404.1326.Google Scholar
[17]Holstein, J. V. S. Morita cohomology. PhD. thesis. University of Cambridge (2014).CrossRefGoogle Scholar
[18]Holstein, J. V. S.Properness and simplicial resolutions for the model category dgCat. Homology Homotopy Appl. 16 (2014), 263273.Google Scholar
[19]Hovey, M.Model Categories. Math. Surv. Monogr. vol. 63 (American Mathematical Society, 2007).Google Scholar
[20]Isaacson, S. B. A note on unenriched homotopy coends. Available at http://www.math.utexas.edu/users/isaacson/PDFs/diss.pdf, 2009.Google Scholar
[21]Katzarkov, L., Pantev, T. and Toën, B.Algebraic and topological aspects of the schematisation functor. Comp. Math. 145 (2009), 633686, math/0503418v2.Google Scholar
[22]Keller, B. On differential graded categories. ArXiv e-prints (2006), math/0601185.Google Scholar
[23]Kelly, G.Basic Concepts of Enriched Category Theory. London Mathematical Society Lecture Notes 64, Cambridge University Press (1982).Google Scholar
[24]Kontsevich, M. The symplectic geometry of homological algebra. Available at http://www.ihes.fr/~maxim/TEXTS/SymplecticAT2009.pdf.Google Scholar
[25]Loday, J.-L.Cyclic homology. Grundlehren der Mathematischen Wissenschaften vol. 301 [Fundamental Principles of Mathematical Sciences] (Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
[26]Loday, J.-L. Free loop space and homology, ArXiv e-prints (2011), 1110.0405.Google Scholar
[27]Lurie, J. Higher Algebra. Available at www.math.harvard.edu/lurie/papers/higheralgebra.pdf (April 2011).Google Scholar
[28]Menichi, L.The cohomology ring of free loop spaces. Homology Homotopy Appl. 3 (2001), 193224.CrossRefGoogle Scholar
[29]Pantev, T., Toën, B. and Vaquie, M. Quantisation and derived moduli spaces I: shifted symplectic structures. ArXiv e-prints (2011), 1111.3209v1.Google Scholar
[30]Pridham, J. P. Tannaka duality for enhanced triangulated categories. ArXiv e-prints (2013), 1309.0637.Google Scholar
[31]Shulman, M.Parametrised spaces model locally constant homotopy sheaves. Topology Appl. 155 (2008), 412432.CrossRefGoogle Scholar
[32]Simpson, C. Algebraic (geometric) n-stacks. ArXiv e-prints (1996), math/9609014v1.Google Scholar
[33]Simpson, C. Geometricity of the Hodge filtration on the ∞-stack of perfect complexes over XDR. ArXiv e-prints (2005), math/0510269.Google Scholar
[34]Tabuada, G. Theorie homotopique des DG-categories. PhD. thesis. Université Paris Diderot - Paris 7 (2007), arXiv:0710.4303v1.Google Scholar
[35]Tabuada, G.Differential graded versus simplicial categories. Topology Appl. 157 (2010), 563593, 0711.3845.Google Scholar
[36]Toën, B.Vers une interprétation Galoisienne de la théorie de l'homotopie. Cahiers Topologie Geom. Différentielle Catég. 43 (2002), 257312.Google Scholar
[37]Toën, B.The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167 (2006), pp. 615667.Google Scholar
[38]Toën, B.Lectures on dg-categories. In Topics in Algebraic and Topological K-Theory. Lecture Notes in Math. vol. 2008 (Springer, Berlin, 2011), 243302.Google Scholar
[39]Toën, B. and Vaquie, M.Moduli of objects in dg-categories, Anna. Sci. École Norm. Sup. 40 (2007), 387444.Google Scholar