Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T08:35:39.814Z Has data issue: false hasContentIssue false

Modular inequalities for [ell ]α-operators

Published online by Cambridge University Press:  24 October 2003

MARÍA J. CARRO
Affiliation:
Departament de Matemàtica Aplicada i Anàlisi, Facultat de Matemàtiques, Universitat de Barcelona, 08071 Barcelona, Spain. e-mail: [email protected]

Abstract

Let $M$ be the Hardy–Littlewood maximal function and let $ M_{(\alpha)}$ be the $\ell^\alpha$-maximal operator defined by $$M_{(\alpha)} \bar{f}(x)=\|{M\bar {f}\|_{\ell^\alpha}=\Bigg(\sum_{i=1}^\infty Mf_i(x)^\alpha\Bigg)^{1/\alpha},$$ where $\bar f=(f_i)_i$, $M\bar f=(Mf_i)_i$ and $\alpha >1$. The purpose of this work is to study modular inequalities of the form $$\int_{{\mathbb R}^n} P \big(\big|\overline M_{(\alpha)}f(x)\big| \big)\,dx \le \sum_j\int_{{\mathbb R}^n } Q(|f_j(x)|)\, dx,$$ where $P$ and $Q$ are modular functions. Our results apply to operators of the form $$\overline T_{(\alpha)} \bar f(x)= \Bigg(\sum_{i=1}^\infty |T_i f_i(x)|^\alpha\Bigg)^{1/\alpha},$$ where $T_i$ satisfies similar properties to $M$.

Type
Research Article
Copyright
© 2003 Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)