Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T19:03:49.249Z Has data issue: false hasContentIssue false

Maximal abelian subgroups of free profinite groups

Published online by Cambridge University Press:  24 October 2008

Dan Haran
Affiliation:
Mathematisches Institut, Universität Erlangen, West Germany
Alexander Lubotzky
Affiliation:
Institute of Mathematics, The Hebrew University, Jersualem, Israel

Extract

The aim of this note is to answer in the negative a question of W. -D. Geyer, asked at the 1983 Group Theory Meeting in Oberwolfach: Is a maximal abelian subgroup A of a free profinite group F necessarily isomorphic to , the profinite completion of

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ax, J.. A metamathematical approach to some problems in number theory. Proc. of Symposia in Pure Math. vol. 20 (1971), 161190. American Mathematical Society.CrossRefGoogle Scholar
[2]Geyer, W.-D.. Unendliche algebraische Zahlkörper, über denen jede Gleichung auflösbar von beschränkter Stufe ist. J. Number Theory 1 (1969), 346374.CrossRefGoogle Scholar
[3]Geyer, W.-D.. Galois groups of intersections of local fields. Israel J. Math. 30 (1978), 382396.CrossRefGoogle Scholar
[4]Lubotzky, A. and Dries, L. van den. Subgroups of free pro-finite groups and large subfields of . Israel J. Math. 39 (1981), 2545.CrossRefGoogle Scholar
[5]Lyndon, R. C. and Schupp, P. E.. Combinatorial Group Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete 89 (Springer-Verlag, 1977).Google Scholar
[6]Neukirch, J.. Freie Produkte proendlicher Gruppen und ihre Kohomologie. Arch. Math. 22 (1971), 337357.CrossRefGoogle Scholar
[7]Scott, P.. Subgroups of surface groups are almost geometric. J. London Math. Soc. 17 (1978), 555565.CrossRefGoogle Scholar
[8]Ribes, L.. Introduction to profinite groups and Galois cohomology. Queens Papers in Pure and Applied Mathematics, vol. 24 (Kingston).Google Scholar