Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-16T18:05:32.606Z Has data issue: false hasContentIssue false

The lattice structure of C*-algebras and their duals

Published online by Cambridge University Press:  24 October 2008

Michael D. Green
Affiliation:
School of Mathematics, The University, Newcastle upon Tyne, NEI 7RU

Extract

Let A be a *-algebra of operators on a Hilbert space H, and let Ah, A+ denote respectively the sets of self-adjoint and positive operators in A. A+ is a positive cone in Ah and it induces a partial ordering in Ah. The lattice properties of Ah were studied by R. Archbold in (1) and (2), and Chu Cho-Ho gave a different proof of some of his results in (3).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Archbold, R.Prime C*-algebras and antilattices. Proc. London Math. Soc. 24 (1972), 669680.CrossRefGoogle Scholar
(2)Archbold, R.Order and commutativity in C*-algebras. Proc. Cambridge Philos. Soc. 76 (1972), 153155.CrossRefGoogle Scholar
(3)Chu, Cho-Ho. Prime faces in C*-algebras. J. London Math. Soc. 7 (1973), 175180.Google Scholar
(4)Crabb, M. J., Duncan, J. & McGregor, C. M.Characterisations of commutativity for C*-algebras. Glasgow Math. J. 15 (1974), 172175.CrossRefGoogle Scholar
(5)Dixmier, J.Les C*-algèbres et leurs représentations, 2e édition (Paris, Gauthiers-Villars, 1969).Google Scholar
(6)Dixmier, J.Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), 2e édition (Paris, Gauthier-Villars, 1969).Google Scholar