Article contents
KMS states on the C*-algebras of Fell bundles over groupoids
Published online by Cambridge University Press: 19 November 2019
Abstract
We consider fibrewise singly generated Fell bundles over étale groupoids. Given a continuous real-valued 1-cocycle on the groupoid, there is a natural dynamics on the cross-sectional algebra of the Fell bundle. We study the Kubo–Martin–Schwinger equilibrium states for this dynamics. Following work of Neshveyev on equilibrium states on groupoid C*-algebras, we describe the equilibrium states of the cross-sectional algebra in terms of measurable fields of states on the C*-algebras of the restrictions of the Fell bundle to the isotropy subgroups of the groupoid. As a special case, we obtain a description of the trace space of the cross-sectional algebra. We apply our result to generalise Neshveyev’s main theorem to twisted groupoid C*-algebras, and then apply this to twisted C*-algebras of strongly connected finite k-graphs.
MSC classification
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 170 , Issue 2 , March 2021 , pp. 221 - 246
- Copyright
- © Cambridge Philosophical Society 2019
References
- 1
- Cited by