Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T07:44:56.214Z Has data issue: false hasContentIssue false

The kernel of the Magnus representation of the automorphism group of a free group is not finitely generated

Published online by Cambridge University Press:  18 July 2011

TAKAO SATOH*
Affiliation:
Department of Mathematics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan. e-mail: [email protected]

Abstract

We show that the abelianization of the kernel of the Magnus representation of the automorphism group of a free group is not finitely generated.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bachmuth, S.Automorphisms of free metabelian groups. Trans. Amer. Math. Soc. 118 (1965), 93104.CrossRefGoogle Scholar
[2]Bachmuth, S. and Mochizuki, H. Y.The non-finite generation of Aut(G), G free metabelian of rank 3. Trans. Amer. Math. Soc. 270 (1982), 693700.Google Scholar
[3]Bachmuth, S. and Mochizuki, H. Y.Aut(F) → Aut(F/F″) is surjective for free group for rank ≥ 4. Trans. Amer. Math. Soc. 292, no. 1 (1985), 81101.Google Scholar
[4]Birman, J. S.Braids, links and mapping class groups. Annals of Math. Studies 82 (Princeton University Press 1974).Google Scholar
[5]Church, T. and Farb, B. Infinite generation of the kernels of the Magnus and Burau representations, preprint, arXiv:math.GR/0909.4825.Google Scholar
[6]Cohen, F. and Pakianathan, J. On automorphism groups of free groups, and their nilpotent quotients, preprint.Google Scholar
[7]Cohen, F. and Pakianathan, J. On subgroups of the automorphism group of a free group and associated graded Lie algebras, preprint.Google Scholar
[8]Farb, B. Automorphisms of F n which act trivially on homology, in preparation.Google Scholar
[9]Fox, R.Free differential calculus I. Ann. of Math. 57 (1953), 547560.CrossRefGoogle Scholar
[10]Hatcher, A.Algebraic Topology (Cambridge University Press, 2001).Google Scholar
[11]Kawazumi, N. Cohomological aspects of Magnus expansions, preprint, arXiv:math.GT/0505497.Google Scholar
[12]Krstić, S. and McCool, J.The non-finite presentability in IA(F 3) and GL 2(Z[t, t −1]). Invent. Math. 129 (1997), 595606.Google Scholar
[13]Lyndon, R. C. and Schupp, P. E.Combinatorial Group Theory (Springer-Verlag, 1977).Google Scholar
[14]Magnus, W.On a theorem of Marshall Hall. Ann. of Math. 40 (1930), 764768.CrossRefGoogle Scholar
[15]Magnus, W.Über n-dimensinale Gittertransformationen. Acta Math. 64 (1935), 353367.CrossRefGoogle Scholar
[16]Magnus, W. and Peluso, A.On a theorem of V. I. Arnold. Comm. Pure Appl. Math. XXII (1969), 683692.CrossRefGoogle Scholar
[17]Morita, S.Abelian quotients of subgroups of the mapping class group of surfaces. Duke Math. J. 70 (1993), 699726.CrossRefGoogle Scholar
[18]Morita, S.Structure of the mapping class groups of surfaces: a survey and a prospect. Geom. Topol. Monogr. 2 (1999), 349406.CrossRefGoogle Scholar
[19]Morita, S.Cohomological structure of the mapping class group and beyond. Proc. of Symposia in Pure Math. 74 (2006), 329354.CrossRefGoogle Scholar
[20]Nielsen, J.Die Isomorphismen der allgemeinen unendlichen Gruppe mit zwei Erzeugenden. Math. Ann. 78 (1918), 385397.CrossRefGoogle Scholar
[21]Reutenauer, C.Free lie algebras. London Math. Soc. Monogr. N.S., no. 7 (Oxford University Press, 1993).CrossRefGoogle Scholar
[22]Satoh, T.New obstructions for the surjectivity of the Johnson homomorphism of the automorphism group of a free group. J. London Math. Soc. (2) 74 (2006), 341360.CrossRefGoogle Scholar
[23]Satoh, T.The cokernel of the Johnson homomorphisms of the automorphism group of a free metabelian group. Trans. Amer. Math. Soc. 361 (2009), 20852107.CrossRefGoogle Scholar
[24]Suzuki, M.The Magnus representation of the Torelli group g, 1 is not faithful for g ≥ 2. Proc. Amer. Math. Soc. 130 (2002), 909914.CrossRefGoogle Scholar