Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T11:41:21.926Z Has data issue: false hasContentIssue false

Invariance principles for logarithmic averages

Published online by Cambridge University Press:  24 October 2008

Miklós Csörgő
Affiliation:
Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
Lajos Horváth
Affiliation:
Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, U.S.A.

Abstract

We obtain weak and strong Gaussian approximations for logarithmic averages of indicators of normalized partial sums. The proofs are based on invariance principles for integrals of an Ornstein–Uhlenbeck process and on strong approximations of normalized partial sums by Orstein–Uhlenbeck processes.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Baxter, J. R. and Brosamler, G. A.. Energy and the law of the iterated logarithm. Math. Scand. 38 (1976), 115136.CrossRefGoogle Scholar
[2]Bickel, P. J. and Wichura, M. J.. Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 (1971), 16561670.CrossRefGoogle Scholar
[3]Billingsley, P.. Convergence of Probability Measures (Wiley, 1968).Google Scholar
[4]Bingham, N. H. and Doney, R. A.. On higher-dimensional analogues of the arc-sine law. J. Appl. Probab. 25 (1988), 120131.CrossRefGoogle Scholar
[5]Bingham, N. H. and Rogers, L. C. G.. Summability methods and almost-sure convergence. In Almost Everywhere Convergence II (Academic Press, 1991), pp. 6983.CrossRefGoogle Scholar
[6]Brosamler, G. A.. The asymptotic behaviour of certain additive functionals of Brownian motion. Invent. Math. 20 (1973), 8796.CrossRefGoogle Scholar
[7]Brosamler, G. A.. An almost everywhere central limit theorem. Math. Proc. Cambridge Philos. Soc. 104 (1988), 561574.CrossRefGoogle Scholar
[8]Brosamler, G. A.. A simultaneous almost everywhere central limit theorem for diffusions and its application to path energy and eigenvalues of the Laplacian. Illinois J. Math. 34 (1990), 526556.CrossRefGoogle Scholar
[9]Chung, K.-L. and Erdős, P.. Probability Limit Theorems Assuming only the First Moment. Memoirs Amer. Math. Soc. no. 6 (American Mathematical Society, 1951).Google Scholar
[10]Csörgő, M. and Révész, P.. Strong Approximations in Probability and Statistics. (Academic Press, 1981).Google Scholar
[11]Einmahl, U.. Strong invariance principles for partial sums of independent random vectors. Ann. Probab. 15 (1987), 14191440.CrossRefGoogle Scholar
[12]Fernique, X.. Régularité des trajectoires desjonctions. École d'Été de Probabilités de Saint-Flour IV-1974. Lecture Notes in Math. vol. 480 (Springer-Verlag, 1975).Google Scholar
[13]Kolmogorov, A. N. and Fomin, S. V.. Introductory Real Analysis (Prentice-Hall, 1970).Google Scholar
[14]Komlós, J., Major, P. and Tusnády, G.. An approximation of partial sums of independent RVs and the sample DF, I. Z. Wahrsch. Verw. Gebiete 32 (1975), 111131.CrossRefGoogle Scholar
[15]Komlós, J., Major, P. and Tusnády, G.. An approximation of partial sums of independent RVs and the sample DF, II. Z. Wahrsch. Verw. Gebiete 34 (1976), 3358.CrossRefGoogle Scholar
[16]Lacey, M. T. and Philipp, W.. A note on the almost sure central limit theorem. Statist. Probab. Lett. 9 (1990), 201205.CrossRefGoogle Scholar
[17]Lévy, P.. Thérie de l'Addition des Variables Aleatoires (Gauthier-Villars, 1937).Google Scholar
[18]Mandl, P.. Analytical Treatment of One-Dimensional Markov Processes (Springer, 1968).Google Scholar
[19]Peligrad, M. and Révész, P.. On the almost-sure central limit theorem. In Almost Everywhere Convergence II (Academic Press, 1991), pp. 209225.CrossRefGoogle Scholar
[20]Révész, P.. Random Walk in Random and Non-Random Environments (World Scientific Publishing Co., 1990).CrossRefGoogle Scholar
[21]Schatte, P.. On strong versions of the central limit theorem. Math. Nachr. 137 (1988), 249256.CrossRefGoogle Scholar
[22]Weigl, A.. Zwei Sätze über die Belegungszeit beim Random Walk. Diplomarbeit, Technische Universität, Vienna (1989).Google Scholar