Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T08:37:29.987Z Has data issue: false hasContentIssue false

The Hausdorff dimension of Julia sets of entire functions II

Published online by Cambridge University Press:  24 October 2008

Gwyneth M. Stallard
Affiliation:
The Open University, Walton Hall, Milton Keynes, MK7 6AA

Abstract

Let f be a transcendental entire function such that the finite singularities of f−1 lie in a bounded set. We show that the Hausdorff dimension of the Julia set of such a function is strictly greater than one.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ash, R. B.. Measure, integration and functional analysis (Academic Press, 1972).Google Scholar
[2]Baker, I. N.. Limit functions and sets of non-normality in iteration theory. Ann. Acad. Sci. Fenn. Ser. A, I Math. 467 (1970), 117.Google Scholar
[3]Baker, I. N.. The domains of normality of an entire function. Ann. Acad. Sci. Fenn. Ser. A, I Math, 1 (1975), 277283.CrossRefGoogle Scholar
[4]Baker, I. N., Kotus, J. and Yinian, . Iterates of meromorphic functions III. Ergod. Th. and Dynam. Sys. 11 (1991), 603618.CrossRefGoogle Scholar
[5]Duren, P. L.. Univalent functions (Springer, 1953).Google Scholar
[6]Eremenko, A. E. and Lyubich, M. Yu. Dynamical properties of some classes of entire functions. Stony Brook Institute of Mathematical Sciences, preprint 1990/1994.Google Scholar
[7]Fatou, P.. Sur les équations fonctionelles. Bull. Soc. Math. France 47 (1919), 161271;CrossRefGoogle Scholar
[7]Fatou, P.. Sur les équations fonctionelles. Bull. Soc. Math. France 48 (1920), 3394, 208314.CrossRefGoogle Scholar
[8]Fatou, P.. Sur l'itération des fonctions transcendantes entières. Acta. Math. 47 (1926), 337370.CrossRefGoogle Scholar
[9]Hayman, W. K. and Kennedy, P. B.. Subharmonic functions I (Academic Press, 1976).Google Scholar
[10]Stallard, G. M.. The Hausdorff dimension of Julia sets of entire functions. Ergod. Th. and Dynam. Sys. 11 (1991), 769777.CrossRefGoogle Scholar
[11]Sullivan, D.. Conformal dynamical systems; in Geometric dynamics, Lecture Notes in Math. vol. 1007 (Springer-Verlag, 1983), pp. 725752.CrossRefGoogle Scholar